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Preface

Turbulence is all around us. The air flowing in and out of our lungs is
turbulent, as is the natural convection in the room in which you sit.
Glance outside; the wind which gusts down the street is turbulent, and
it is turbulence that disperses the pollutants, which belch from the rear
of motor cars, saving us from asphyxiation. Turbulence controls the
drag on cars, aeroplanes, and bridges, and it dictates the weather
through its influence on large-scale atmospheric and oceanic flows. The
liquid core of the earth is turbulent, and it is this turbulence that
maintains the terrestrial magnetic field against the natural forces of
decay. Even solar flares are a manifestation of turbulence, since they are
triggered by vigorous motion on the surface of the sun. It is hard not to
be intrigued by a subject which pervades so many aspects of our lives.

Yet curiosity can so readily give way to despair when the budding
enthusiast embarks on serious study. The mathematical description of
turbulence is complex and forbidding, reflecting the profound diffi-
culties inherent in describing three-dimensional, chaotic processes.

This is a textbook and not a research monograph. Our principle aim
is to bridge the gap between the elementary, heuristic accounts of
turbulence to be found in undergraduate texts, and the more rigorous,
if daunting, accounts given in the many excellent monographs on the
subject. Throughout we seek to combine the maximum of physical
insight with the minimum of mathematical detail.

Turbulence holds a unique place in the field of classical mechanics.
Despite the fact that the governing equations have been known since
1845, there is still surprisingly little we can predict with relative cer-
tainty. The situation is reminiscent of the state of electromagnetism
before it was transformed by Faraday and Maxwell. A myriad of ten-
tative theories have been assembled, often centred around particular
experiments, but there is not much in the way of a coherent theoretical
framework.” The subject tends to consist of an uneasy mix of semi-
empirical laws and deterministic but highly simplified cartoons,

! One difference between turbulence and nineteenth century electromagnetism is

that the latter was eventually refined into a coherent theory, whereas it is unlikely that
this will ever occur in turbulence.

vii
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bolstered by the occasional rigorous theoretical result. Of course, such a
situation tends to encourage the formation of distinct camps, each with
its own doctrines and beliefs. Engineers, mathematicians, and physicists
tend to view turbulence in rather different ways, and even within each
discipline there are many disparate groups. Occasionally religious wars
break out between the different camps. Some groups emphasize the
role of coherent vortices, while others downplay the importance of
such structures and advocate the use of purely statistical methods of
attack. Some believe in the formalism of fractals or chaos theory, others
do not. Some follow the suggestion of von Neumann and try to unlock
the mysteries of turbulence through massive computer simulations,
others believe that this is not possible. Many engineers promote the use
of semi-empirical models of turbulence; most mathematicians find that
this is not to their taste. The debate is often vigorous and exciting and
has exercised some of the finest twentieth century minds, such as
L.D. Landau and G.I. Taylor. Any would-be author embarking on a
turbulence book must carefully pick his way through this minefield,
resigned to the fact that not everyone will be content with the outcome.
But this is no excuse for not trying; turbulence is of immense impor-
tance in physics and engineering, and despite the enormous difficulties
of the subject, significant advances have been made.

Roughly speaking, texts on turbulence fall into one of two cate-
gories. There are those that focus on the turbulence itself and address
such questions as: where does turbulence come from, what are its
universal features, to what extent is it deterministic? On the other
hand, we have texts whose primary concern is the influence of tur-
bulence on practical processes, such as drag, mixing, heat transfer, and
combustion. Here the main objective is to parameterize the influence
of turbulence on these processes. The word modelling appears fre-
quently in such texts. Applied mathematicians and physicists tend to
be concerned with the former category, while engineers are neces-
sarily interested in the latter. Both are important, challenging subjects.

On balance, this text leans slightly towards the first of these cate-
gories. The intention is to provide some insight into the physics of
turbulence and to introduce the mathematical apparatus which is
commonly used to dissect turbulent phenomena. Practical applica-
tions, alas, take a back seat. Evidently such a strategy will not be to
everyone’s taste. Nevertheless, it seems natural when confronted with
such a difficult subject, whose pioneers adopted both rigorous and
heuristic means of attack, to step back from the practical applications
and try and describe, as simply as possible, those aspects of the subject
which are now thought to be reasonably well understood.

Our choice of material has been guided by the observation that the
history of turbulence has, on occasions, been one of heroic initiatives
which promised much yet delivered little. So we have applied the filter
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of time and chosen to emphasize those theories, both rigorous and
heuristic, which look like they might be a permanent feature of the
turbulence landscape. There is little attempt to document the latest
controversies, or those findings whose significance is still unclear. We
begin, in Chapters 1-5, with a fairly traditional introduction to the
subject. The topics covered include: the origins of turbulence,
boundary layers, the log-law for heat and momentum, free-shear flows,
turbulent heat transfer, grid turbulence, Richardson’s energy cascade,
Kolmogorov’s theory of the small scales, turbulent diffusion, the clo-
sure problem, simple closure models, and so on. Mathematics is kept to
a minimum and we presuppose only an elementary knowledge of fluid
mechanics and statistics. (Those statistical ideas which are required, are
introduced as and when they are needed in the text.) Chapters 1-5 may
be appropriate as background material for an advanced undergraduate
or introductory postgraduate course on turbulence.

Next, in Chapters 6-8, we tackle the somewhat refined, yet fun-
damental, problem of homogeneous turbulence. That is, we imagine a
fluid that is vigorously stirred and then left to itself. What can we say
about the evolution of such a complex system? Our discussion of
homogeneous turbulence differs from that given in most texts in that
we work mostly in real space (rather than Fourier space) and we pay
as much attention to the behaviour of the large, energy-containing
eddies, as we do to the small-scale structures.

Perhaps it is worth explaining why we have taken an unconventional
approach to homogeneous turbulence, starting with our slight reluct-
ance to embrace Fourier space. The Fourier transform is con-
ventionally used in turbulence because it makes certain mathematical
manipulations easier and because it provides a simple (though crude)
means of differentiating between large and small-scale processes.
However, it is important to bear in mind that the introduction of the
Fourier transform produces no new information; it simply represents a
transfer of information from real space to Fourier space. Moreover,
there are other ways of differentiating between large and small scales,
methods that do not involve the complexities of Fourier space. Given
that turbulence consists of eddies (blobs of vorticity) and not waves, it
is natural to ask why we must invoke the Fourier transform at all.
Consider, for example, grid turbulence. We might picture this as an
evolving vorticity field in which vorticity is stripped off the bars of the
grid and then mixed to form a seething tangle of vortex tubes and
sheets. It is hard to picture a Fourier mode being stripped off the bars of
the grid! It is the view of this author that, by and large, it is preferable to
work in real space, where the relationship between mathematical
representation and physical reality is, perhaps, a little clearer.

The second distinguishing feature of Chapters 6-8 is that equal
emphasis is given to both large and small scales. This is a deliberate
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attempt to redress the current bias towards small scales in mono-
graphs on homogeneous turbulence. Of course, it is easy to see how
such an imbalance developed. The spectacular success of Kolmogorov’s
theory of the small eddies has spurred a vast literature devoted to
verifying (or picking holes in) this theory. Certainly it cannot be
denied that Kolmogorov’s laws represent one of the milestones of
turbulence theory. However there have been other success stories too.
In particular, the work of Landau, Batchelor, and Saffman on the
large-scale structure of homogeneous turbulence stands out as a
shining example of what can be achieved through careful, physically
motivated analysis. So perhaps it is time to redress the balance, and it
is with this in mind that we devote part of Chapter 6 to the dynamics
of the large-scale eddies. Chapters 6-8 may be suitable as background
material for an advanced postgraduate course on turbulence, or act as
a reference source for professional researchers.

The final section of the book, Chapters 9 and 10, covers certain
special topics rarely discussed in introductory texts. The motivation
here is the observation that many geophysical and astrophysical flows
are dominated by the effects of body forces, such as buoyancy,
Coriolis and Lorentz forces. Moreover, certain large-scale flows are
approximately two-dimensional and this has led to a concerted
investigation of two-dimensional turbulence over the last few years.
We touch on the influence of body forces in Chapter 9 and two-
dimensional turbulence in Chapter 10.

There is no royal route to turbulence. Our understanding of it is
limited and what little we do know is achieved through detailed and
difficult calculation. Nevertheless, it is hoped that this book provides
an introduction which is not too arduous and which allows the reader
to retain at least some of that initial sense of enthusiasm and wonder.

It is a pleasure to acknowledge the assistance of many friends and
colleagues. Alan Bailey, Kate Graham, and Teresa Cronin all helped in
the preparation of the manuscript, Jean Delery of ONERA supplied
copies of Henri Werle’s beautiful photographs, while the drawing of
the cigarette plume and the copy of Leonardo’s sketch are the work of
Fiona Davidson. I am grateful to Julian Hunt, Marcel Lesieur, Keith
Moftfatt, and Tim Nickels for many interesting discussions on turbu-
lence, and to Alison Jones and Anita Petrie at OUP for their patience
and professionalism. In addition, several useful suggestions were made
by Ferit Boysan, Jack Herring, Jon Morrison, Mike Proctor, Mark
Saville, Christos Vassilicos, and John Young. Finally, I would like to
thank Stephen Davidson who painstakingly read the entire manu-

script, exposing the many inconsistencies in the original text.

P.A. Davidson
Cambridge, 2003
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PART I

The classical picture of turbulence






Turbulent jets at different Reynolds
numbers, with the higher value of Re on the
right. Note that the edges of the jets are
highly convoluted. (See the discussion in
Section 4.3.1.) Note also that the small scales
become finer as the Reynolds number
increases. [Courtesy of Physics of Fluids

& P E Dimotakis, California Institute of
Technology.]

CHAPTER I

The ubiquitous nature of
turbulence

Vether it’'s worth goin” through so much, to learn so little, as the
charity-boy said ven he got to the end of the alphabet, is a matter
o taste.

Charles Dickens, Pickwick Papers

The study of turbulence is not easy, requiring a firm grasp of applied
mathematics and considerable physical insight into the dynamics of
fluids. Worse still, even after the various theoretical hypotheses have
been absorbed, there are relatively few situations in which we can
make definite predictions!

For example, perhaps the simplest (and oldest) problem in turbu-
lence concerns the decay of energy in a cloud of turbulence. That is,
we stir up a fluid and then leave it to itself. The turbulence decays
because of viscous dissipation and a natural question to ask is: how fast
does the kinetic energy decline? Theoretical physicists and applied
mathematicians have been trying to answer this question for over half
a century and still they cannot agree. At times, one is tempted to side
with Weller the elder in Pickwick Papers.

Nevertheless, there are certain predictions which can be made
based on a variety of physical arguments. This is important because
turbulent motion is the natural state of most fluids. As you read
this book the air flowing up and down your larynx is turbulent, as
is the natural convection in the room in which you sit. Glance
outside: if you are lucky you will see leaves rustling in the turbulent
wind. If you are unlucky you will see pollutants belching out from
the rear of motor cars, and it is turbulent convection in the street
which disperses the pollutants, saving the pedestrians from an
unfortunate fate.

Engineers need to know how to calculate the aerodynamic drag on
planes, cars, and buildings. In all three cases the flow will certainly be
turbulent. At a larger scale, motion in the oceans and in the atmo-
sphere is turbulent, so weather forecasters and oceanographers study
turbulence. Turbulence is also important in geophysics, since it
is turbulent convection in the core of the earth which maintains
the earth’s magnetic field despite the natural forces of decay. Even



The ubiquitous nature of turbulence

Figure 1.1 Flow between concentric
cylinders. As the rotation rate of the inner
cylinder increases, the flow becomes
progressively more complex until
eventually turbulence sets in.

astrophysicists study turbulence, since it controls phenomena such as
solar flares, sun-spots, and the 22-year solar cycle.

It is the ubiquitous nature of turbulence, from the eruption of solar
flares to the rustling of leaves, which makes the subject both import-
ant and intriguing. The purpose of this chapter is to give some indi-
cation as to just how widespread turbulence really is. We start by

describing some simple laboratory experiments.

1.1 'The experiments of Taylor and Bénard

It is an empirical observation that the motion of a very viscous or slow
moving fluid tends to be smooth and regular. We call this laminar
flow. However, if the fluid viscosity is not too high, or the char-
acteristic speed is moderate to large, then the movement of the fluid
becomes irregular and chaotic, that is, turbulent. The transition from
laminar to turbulent motion is nicely illustrated in a number of simple
experiments, of which the most famous are probably those of
Reynolds, Bénard, and Taylor.

In 1923 Taylor described a remarkably simple, yet thought-
provoking experiment. Suppose that we have two concentric cylinders
and that the annular gap between the cylinders is filled with a liquid,
say water. The inner cylinder is made to rotate while the outer one
remains stationary. At low rotation rates the fluid within the gap does
what you would expect: it also rotates, being dragged around by the
inner cylinder. At higher rotation rates, however, something unex-
pected happens. At a certain critical speed, toroidal vortices suddenly
appear, superimposed on the primary circular motion (this is shown
schematically in Figure 1.1(a)). These axisymmetric structures are
called Taylor vortices, for an obvious reason, and they arise because of
an instability of the basic rotary flow. The net motion of a fluid
particle is now helical, confined to a toroidal surface.

—
o
=
N
—
(=5
N
—
s
<

;(‘
2

)
i
gU
]

A
N\ D
g
—_——
T
SN
S
~—— T

—_—
—~\T
!
o N\
<

&
~ <
G
\ 2

=/

o

— N e~
=
A
AN
5
P
vd

(]
-DEEEQ]
)l
@)

PE ~
e
(‘ﬂd

Eadd

WM,J

Taylor vortices Wavy Taylor vortices ~ Turbulent Taylor vortices



SV WRATIM

U

- |

Figure 1.2 Variations of the axial
component of velocity with time at some
typical location in the annulus. When the
flow is turbulent there is a mean component
of motion plus a random component.

The experiments of Taylor and Bénard

The reason for the sudden appearance of Taylor vortices is related
to the centrifugal force. This tends to drive the rotating fluid radially
outward. Below the critical speed this force is balanced by a radial
pressure gradient and there is no radial motion. However, the centri-
fugal force is greatest at points where the rotation rate is highest (near
the inner cylinder) and so there is always a tendency for fluid at the
inner surface to move outward, displacing the outer layers of fluid.
This tendency is held in check by pressure and viscous forces. At the
critical rotation rate, however, the viscous forces are no longer able to
suppress radial disturbances and the flow becomes unstable to the
slightest perturbation. Of course, all of the rapidly rotating fluid
cannot move uniformly outward because the outer fluid is in the way.
Thus the flow breaks up into bands (or cells) as shown in Figure 1.1(a).
This is known as the Rayleigh instability."

Now suppose we increase the rotation rate a little more, say by
25%. The Taylor vortices themselves become unstable and so-called
wavy Taylor vortices appear. These have the appearance of non-
axisymmetric toroidal vortices which migrate around the inner
cylinder (Figure 1.1(b)). Note that, although complex, this flow is still
laminar (non-chaotic).

Suppose we now increase the speed of the inner cylinder yet further.
More complex, unsteady structures start to emerge (so-called modu-
lated wavy Taylor vortices) until eventually, when the speed of the
inner cylinder is sufficiently high, the flow becomes fully turbulent. In
this final state the time-averaged flow pattern resembles that of the
steady Taylor vortices shown in Figure 1.1(a), although the cells are a
little larger. However, superimposed on this mean flow, we find a
chaotic component of motion, so that individual fluid particles are no-
longer confined to toroidal surfaces. Rather, as they are swept around
by the mean flow, there is a constant jostling for position, almost as if
the particles are in a state of Brownian motion (Figure 1.1(c)). A
typical measurement of, say, u,(t) would look something like that
shown in Figure 1.2. (Here u is the time-averaged value of u,.)

In fact, it is not just the rotation rate, ), which determines which
regime prevails. The viscosity of the fluid, v, the annular gap, 4, the
radius of the inner cylinder, R, and the length of the apparatus, L, are
also important. We can construct three independent dimensionless
groups from €, v, d, R, and L, say,

- Q'R d

Ta

H H

L
V2 R R’

! Rayleigh identified the instability mechanism and produced a stability criterion for
inviscid, rotating flows. Taylor later extended the theory to viscous flows of the type
shown in Figure 1.1(a).
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Figure 1.3 Fluid is held between two flat,
parallel plates. The lower plate is heated.

At low values of AT the fluid is quiescent. As
AT is increased natural convection sets in,
first in the form of regular convection cells
and then in the form of turbulent flow.
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The first of these groups, Ta, is called the Taylor number. (Different
authors use slightly different definitions of Ta.) When the apparatus is
very long, L>> R, and the gap very narrow, d < R, it happens to be
the value of Ta, and only Ta, which determines the onset of Taylor
vortices. In fact, the critical value of Ta turns out to be 1.70 X 10” and
the axial wave number of the vortices is k=2n/4A=3.12/d, A being
the wavelength.

Let us now consider a quite different experiment, often called
Bénard convection or Rayleigh-Bénard convection. Suppose that a
fluid is held between two large, flat, parallel plates, as shown in
Figure 1.3(a). The lower plate is maintained at temperature
T=T,+ AT and the upper plate at temperature T,. At low values of
AT the fluid remains stagnant and heat passes from one plate to the
other by molecular conduction. Of course there is an upward buoy-
ancy force which is greatest near the lower plate and tends to drive the
fluid upward. However, at low values of AT this force is exactly
balanced by a vertical pressure gradient. We now slowly increase AT.
At a critical value of AT the fluid suddenly starts to convect as shown
in Figure 1.3(b).

The flow consists of hot rising fluid and cold falling regions. This
takes the form of regular cells, called Bénard cells, which are remin-
iscent of Taylor vortices.” The rising fluid near the top of the layer
loses its heat to the upper plate by thermal conduction, whereupon it
starts to fall. As this cold fluid approaches the lower plate it starts to
heat up and sooner or later it reverses direction and starts to rise again.
Thus we have a cycle in which potential energy is continuously
released as light fluid rises and dense fluid falls. Under steady condi-
tions the rate of working of the buoyancy force is exactly balanced by
viscous dissipation within the fluid.

The transition from the quiescent state to an array of steady con-
vection cells is, of course, triggered by an instability associated with
the buoyancy force. If we perturb the quiescent state, allowing hot
fluid to rise and cold fluid to fall, then potential energy will be released
and, if the viscous forces are not too excessive, the fluid will accelerate

? In plan view the convection cells can take a variety of forms, depending on the
value of (AT)/(AT )crrr and on the shape of the container. Two-dimensional rolls and
hexagons are both common.



The experiments of Taylor and Bénard

giving rise to an instability. On the other hand, if the viscous forces are
large then viscous dissipation can destroy all of the potential energy
released by the perturbation. In this case the quiescent configuration is
stable. Thus we expect the quiescent state to be stable if AT is small
and v large, and unstable if AT is large and v is small.

It is possible to set up a variational problem where one looks for the
form of perturbation which maximizes the rate of release of potential
energy and minimizes the viscous dissipation. On the assumption that
the observed convection cells have just such a shape this yields the
critical values of AT and v at which instability first sets in. It turns out
that the instability criterion is

 gPATH
R

> 1.70 X 10°

where Ra (a dimensionless parameter) is known as the Rayleigh
number, f is the expansion coefficient of the fluid, d is the height of
the gap and « the thermal diffusivity. The wave number (27/ wavelength)
of the convection cells is k —3.12/4.

Of course we have seen these numbers before. The critical value of
the Taylor number for narrow annuli is

~ OPR

Ta = =1.70 X 10°

2
and the wave number of the Taylor cells at the onset of instability is
k =3.12/d. At first sight this coincidence seems remarkable. However,
it turns out that there is an analogy between axisymmetric flow with
swirl (in the narrow-gap approximation) and natural convection. The
analogue of the buoyancy force is the centrifugal force and the angular
momentum, I" = rug, in a rotating axisymmetric flow is convected and
diffused just like the temperature, T, in Bénard’s experiment.3 In fact,
Rayleigh first derived his famous criterion for the instability of a
rotating, inviscid fluid through a consideration of the analogy between
the buoyancy and centrifugal forces.

Now suppose Ra is slowly increased above its critical value. Then
there is a point at which the Bénard cells themselves become unstable
and more complex, unsteady structures start to appear. Eventually,
when Ra is large enough, we reach a state of turbulent convection.

It seems that the general picture which emerges from both Taylor’s
and Bénard’s experiments is the following. For high viscosities the
basic configuration is stable. As the viscosity is reduced we soon reach
a point where the basic equilibrium is unstable to infinitesimal per-
turbations and the system bifurcates (changes) to a more complex
state, consisting of a steady laminar flow in the form of regular cells.

3 Actually it turns out that there is a 0.7% difference in the critical value Ta and Ra, so
the analogy is very nearly, but not exactly, perfect.
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Figure 1.4 Flow behind a cylinder:
(a) Re < 1; (b) 5 <Re < 40;

(c) 100 < Re < 200; (d) Re ~ 10%
and (e) Re ~ 10°.

As the viscosity is reduced even further the new flow itself becomes
unstable and we arrive at a more complex motion. Subsequent
reductions in viscosity give rise to progressively more complex flows
until eventually, for sufficiently small v, the flow is fully turbulent. At
this point the flow field consists of a mean (time-averaged) component
plus a random, chaotic motion. This sequence of steps is called the
transition to turbulence.

1.2 Flow over a cylinder

This kind of behaviour, in which a fluid passes through a sequence of
flow regimes of increasing complexity as v is reduced, is also seen in
external flows. Consider, for example, flow past a cylinder, as shown
in Figure 1.4. An inverse measure of v is given by the (dimensionless)
Reynolds number, Re = ud/ v, where u is the upstream speed of the fluid
and d the diameter of the cylinder. At high values of v we have a
steady, symmetric flow pattern. As Re approaches unity the upstream-—
downstream symmetry is lost and in the range Re~5-40 we find
steady vortices attached to the rear of the cylinder. When Re reaches a
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Reynolds” experiment

value of around 40 an instability is observed in the form of an oscil-
lation of the wake, and by the time we reach Re ~ 100 the vortices start
to peel off from the rear of the cylinder in a regular, periodic manner.
The flow is still laminar but we have now lost the top-bottom sym-
metry. This is, of course, the famous Karman vortex street. The
laminar Karman street persists up to Re ~ 200 at which point three-
dimensional instabilities develop. By Re ~ 400 low levels of turbulence
start to appear within the vortices. Nevertheless, the periodicity of the
vortex shedding remains quite robust. Eventually, for high values of
Re, say 10°, the turbulence spreads out of the vortices and we obtain a
fully turbulent wake. Within this wake, however, one can still detect
coherent vortex shedding. Thus we have the same sort of pattern
of behaviour as seen in Taylor's experiment. As v is reduced the
flow becomes more and more complex until, eventually, turbulence
sets in.

This example is important since it illustrates the key role played by
Re in determining the state of a flow. In general, Re = ul/ v represents
the ratio of inertial to viscous forces in a fluid, provided that [ is
chosen appropriately.” Thus, when Re is large, the viscous forces,
and hence viscous dissipation, is small. Such flows are prone to

instabilities and turbulence, as evidenced by our example of flow over
a cylinder.

1.3 Reynolds’ experiment

The transition from laminar to turbulent flow, and the important role
played by Re in this transition, was first pointed out by Reynolds in
1883. Reynolds was concerned with flow along a straight, smooth pipe
which, despite having a particularly simple geometry, turns out to be
rather more subtle and complex than either Taylor’s or Bénard’s
experiments.

In his now famous paper, Reynolds clearly distinguished between
the two possible flow regimes (laminar and turbulent) and argued that
the parameter which controlled the transition from one regime to
another had to be Re = ud/v, where d is the pipe diameter and u the
mean flow down the pipe. He also noted that the critical value of Re
at which turbulence first appears is very sensitive to disturbances at
the entrance to the pipe. Indeed, he suggested that the instability
which initiates the turbulence might require a perturbation of a certain
magnitude, for a given value of Re, for the unstable motion to take

* The inertial forces are of order u°/l, where I, is a length-scale typical of the
streamline pattern, say the curvature of the streamlines, while the viscous forces are
of order vu/E, where 1, is a length typical of cross-stream gradients in velocity (see
Chapter 2).
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Figure 1.5 Turbulent slugs near the inlet
of a pipe.

IO

root and turbulence to set in. For example, when the inlet disturb-
ances were minimized, he found the laminar flow to be stable up to
Re ~ 13,000, whereas turbulence typically appears at Re ~ 2000 if no
particular effort is taken to minimize the disturbances. We now know
that Reynolds was right. The current view is that fully developed
laminar pipe flow is stable to infinitesimal disturbances for all values of
Re, no matter how large, and indeed recent experiments (with very
special inlet conditions) have achieved laminar flow for values of Re
up to 90,000. It is the size of the disturbance, and the type of inlet,
which matters.

Reynolds also examined what happens when turbulence is artifi-
cially created in the pipe. He was particularly interested in whether or
not there is a value of Re below which the turbulence dies out. It turns
out that there is, and that this corresponds to Re ~ 2000.

The modern view is the following. The inlet conditions are
very important. When we have a simple, straight inlet, as shown in
Figure 1.5, and Re exceeds 10°, turbulence tends to appear first in the
annular boundary layer near the inlet. The turbulence initially takes
the form of small, localized patches of chaotic motion. These ‘tur-
bulent spots” then spread and merge until a slug of turbulence fills the
pipe (Figure 1.5). For lower values of Re, on the other hand, the
boundary layer near the inlet is thought to be stable to small disturb-
ances. Thus the perturbations which initiate transition in the range
2000-10" must be present at the pipe inlet, or else represent a finite-
amplitude instability of the boundary layer near the inlet. In any event,
whatever the origin of the turbulence, it appears that transition starts
with a series of intermittent turbulent slugs passing down the pipe
(Figure 1.5). Provided Re exceeds ~2000, these slugs tend to grow in
length at the expense of the non-turbulent fluid between them,
eventually merging to form fully developed turbulence. When Re is
less than ~2000, on the other hand, any turbulent slugs which are
generated near the inlet simply decay.

1.4 Common themes

The examples above suggest that there are at least two types of
transition to turbulence. There are flows in which turbulent motion
appears first in small patches. Provided Re is large enough, the

e R
e SN N AN Nl AR
ooy s T
~ 7 ~ ~
/',:m ! DD R A SR RIR N
PauiN ANANAN N A |

! } } !

Initiation Formation of turbulent slug Laminar region Turbulent slug



Figure 1.6 Transition to turbulence in a
boundary layer.

Common themes
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turbulent patches grow and merge until fully developed turbulence is
established. This is typical of transition to turbulence in boundary
layers (Figure 1.6) and in pipes. The key point here is that, in the
transition region, the turbulence is somewhat intermittent, being
interspersed by quiescent, laminar regions.

Then there are flows in which, when a certain threshold is exceeded,
chaos develops uniformly throughout the fluid. This might start out as
a simple instability of the mean flow, leading to a more complicated
laminar motion, which in turn becomes unstable and breaks up into
even more complex structures. (See Figures 1.1 and 1.3.) A sequence
of such instabilities leads eventually to random, chaotic motion, that
is, turbulence.

A familiar example of this second type of transition occurs in the
buoyant plume from a cigarette. As the plume rises the fluid acceler-
ates and Re becomes larger. Sooner or later an instability sets in and
the laminar plume starts to exhibit a complex, three-dimensional
structure. Shortly thereafter the plume becomes fully turbulent
(Figure 1.7).

The essential point is that fluid motion is almost always inherently
unstable, and that incipient instabilities are suppressed only if the
viscous dissipation is high enough. However, virtually all fluids have
an extremely low viscosity. This is true of water, air, blood, the
molten metal in the core of the earth, and the atmosphere of the sun.
The implication is that turbulence is the natural state of things and
indeed this is the case. Consider, for example, Bénard convection in a
layer of water one inch deep. The initial instability sets in at a temper-
ature difference of AT ~ 0.01°C and the final transition to turbulence
occurs at AT~ 0.1°C, which is not a huge temperature difference!
Alternatively, we might consider Taylor’s experiment. If R =10 cm,
the annular gap is 1 cm and the fluid is water, then the flow will
become unstable when the peripheral speed of the inner cylinder
exceeds a mere 1 cm/s. Evidently, laminar flow is the exception and
not the rule in nature and technology.

II
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Figure 1.7 A schematic representation of a
cigarette plume (after Corrsin 1961).
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So far we have carefully avoided giving a formal definition of tur-
bulence. In fact, it turns out to be rather difficult, and possibly not very
useful, to provide one.” It is better simply to note that when v is made

small enough all flows develop a random, chaotic component of
motion. We group these complex flows together, call them turbulent,
and then note some of their common characteristics. They are:

(1) the velocity field fluctuates randomly in time and is highly dis-
ordered in space, exhibiting a wide range of length scales;

* Nevertheless, we provide a definition in Section 2.4 of Chapter 2!



Figure 1.8 A cylinder is towed through a
quiescent fluid and u, is measured at location
Xo. The records of u,(t) in two nominally
identical realizations of the experiment are
quite different.

Common themes

(2) the velocity field is unpredictable in the sense that a minute
change to the initial conditions will produce a large change to the

subsequent motion.

To illustrate the second point consider the following experiment.
Suppose we tow an initially stationary cylinder through a quiescent
fluid at a fixed speed creating a turbulent wake. We do the experiment
one hundred times and on each occasion we measure the velocity as a
function of time at a point a fixed distance downstream of the cylinder,
say X, in a frame of reference travelling with the cylinder. Despite the
nominally identical conditions we find that the function u(x,, t) is quite
different on each occasion. This is because there will always be some
minute difference in the way the experiment is carried out and it is in
the nature of turbulence that these differences are amplified. It is
striking that, although the governing equations of incompressible flow
are quite simple (essentially Newton’s second law applied to a con-
tinuum), the exact details of u(x, t) appear to be, to all intents and
purposes, random and unpredictable.

Now suppose that we do something different. We measure u(x, t)
for some considerable period of time and then calculate the time-
average of the signal, u(x,). We do this a second time and then a
third. Bach time we obtain the same value for u(x,), as indicated in
Figure 1.8. The same thing happens if we calculate uZ. Evidently,
although u(x, t) appears to be random and unpredictable, its statistical
properties are not. This is the first hint that any theory of turbulence
has to be a statistical one, and we shall return to this point time and
again in the chapters which follow.

In summary, then, the statistical properties of a turbulent flow are
uniquely determined by the boundary conditions and the initial condi-

tions. If a sequence of nominally identical experiments are carried out,

Realization 1

13
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then the statistical properties of the flow will not change from one
experiment to the next, even though the details of the individual
realizations will be different. To be more precise: the inevitable minute
variations in the different realizations of the experiments produce only
minute variations in the statistics. In principle, u(t) is also uniquely
determined by the boundary conditions and initial conditions. How-
ever, in any laboratory experiment the initial conditions can be con-
trolled only to within a certain level of accuracy and no matter how
hard we try there will always be infinitesimal variations between experi-
ments. It is in the nature of turbulence to amplify these variations so
that, no matter how small the perturbations in the initial conditions,
the resulting trace of u(t) eventually looks completely different from
one realization to the next. It should be emphasized that this is not
because we are poor experimentalists and that if only we could control
conditions better the variability in u(t) would disappear. Almost any
change in the initial conditions, no matter how small, eventually leads
to an order one change in u(t). This extreme sensitivity to initial
conditions, long known to experimentalists, is now recognized as the
hallmark of mathematical chaos, and is exhibited by a wide range of
non-linear systems (see Chapter 3, Section 3.1).°

1.5 The ubiquitous nature of turbulence

Of course turbulence is not restricted to the laboratory. It influences
many aspects of our lives, operating at many scales, from the vast to
the small. Let us take a moment to discuss some of the more common
examples of turbulence, starting with large-scale phenomena.
Perhaps the most spectacular of the large-scale manifestations of
turbulence is a solar flare. Solar flares are associated with so-called
prominences: those vast, arch-like structures which can be seen at the
surface of the sun during a solar eclipse (Figure 1.9(a)). Prominences
extend from the chromosphere (the lower atmosphere of the sun) up
into the corona, and contain relatively cool chromospheric gas, perhaps
300 times cooler than the surrounding coronal gas. They are huge,
typically ten times the size of the earth. Prominences are immersed in,
and surrounded by, magnetic flux tubes which arch up from the
photosphere (the surface of the sun), criss-crossing the prominence.
The magnetic flux tubes hold the prominence in place (Figure 1.9(b)).
Those overlying the prominence (the so-called magnetic arcade) push
down on it, while those lying below provide a magnetic cushion.

Some prominences are stable, long-lived structures, surviving many

¢ We shall see in Chapter 3 that two initial conditions separated by a small amount, €,
typically lead to solutions which diverge at a rate & exp(At) where A is a constant.



Figure 1.9 (a) Solar prominences
(Encyclopaedia Britannica 1926). (b) A
cartoon of a solar flare. Turbulent motion
on the surface of the sun causes the footpoints
of the magnetic flux tubes to jostle for
position. The flux tubes then become entan-
gled leading to magnetic reconnection, a loss
of equilibrium, and finally to a solar flare.
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Figure 1.10 The solar wind causes
turbulence in the magnetosphere.

Turbulent convection in the
core of the earth maintains the earth’s
magnetic field.

Figure 1.11
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weeks. Others erupt explosively, releasing prodigious amounts of
energy (~ 10 J) in a matter of hours. Turbulence plays several key
roles in these explosions. The first point is that the surface of the sun is
highly turbulent and so there is a constant jostling of the foot points of
the magnetic flux tubes. As a result, the flux tubes in the corona can
become entangled, leading to so-called magnetic reconnection in
which flux tubes are severed and recombine. (This severing of the flux
tubes happens through the local action of turbulence in the corona.) In
the process the equilibrium of the prominence is lost and vast
amounts of mass and energy are propelled out into space.

This sudden release of mass and energy enhances the solar wind
which spirals radially outward from the sun. Thus the mass released
by a solar flare sweeps through the solar system and one or two days
after a flare erupts the earth is buffeted by magnetic storms which
generate turbulence in the magnetosphere. The earth is shielded from
the solar wind by its magnetic field which deflects the charged par-
ticles in the wind around the earth (Figure 1.10). So, without the
earth’s magnetic field we would all be in bad shape.

But why does the earth, and indeed many of the planets, possess a
magnetic field? The interiors of the planets do not contain any mag-
netic material, and the planets themselves are, by and large, too old for
their magnetic fields to be some relic of the primordial field trapped
within them at their birth. Such a field would long ago have decayed.
The answer, it seems, is turbulence. It is now generally agreed that the
source of these magnetic fields is turbulent convection within the core
of the planets (Figure 1.11). This acts like a dynamo, converting

15
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Figure 1.12 Flow around a building gives
rise to a turbulent wake. (See also Plate 2.)

16

— S~~~
s )T B
SN
u oo oo+° mew
qwmw
o0 DG\_@ 2 e~ ’\/\\\A.,%
oa a0
2 TN o T e

JTT7 7 T 777

mechanical energy into magnetic energy. So both astrophysicists and
geophysicists have to contend with the effects of turbulence.

Closer to home, large-scale oceanic and atmospheric flows are
turbulent, so the art of weather forecasting is one of predicting the
short-term evolution of a highly complex turbulent flow. Indeed,
the need for accurate weather forecasting has provided much of
the impetus for the development of numerical methods in turbulence
research.

Of course, engineers of every sort have to contend with turbulence.
The aerodynamic drag on a plane or a car is controlled by turbulent
boundary layers (Plate 1) and indeed one of the major stumbling
blocks to better wing design is our lack of understanding of turbu-
lence. On the other hand, structural engineers have to worry about
turbulent wind loading and the effects of turbulent wakes from high
buildings (Figure 1.12), while the designers of internal combustion
engines rely on the turbulent mixing of the fuel and gases to maximize
efficiency. Turbulence is also crucial in the environmental arena as city
planners have to model the turbulent dispersion of pollutants from
chimney stacks (Plate 2) and car engines, while architects need to
predict how natural convection influences the temperature distribu-
tion within a building. Even steel makers have to worry about turbu-
lence since excess turbulence in an ingot casting can cause a
deterioration in the metallurgical structure of the ingot.

Evidently, there is a clear need not just for a qualitative under-
standing of turbulence, but also for the ability to make quantitative
predictions. Such predictions are, however, extremely difficult. Con-
sider, for instance, the simple case of a cigarette plume (Figure 1.7).
The smoke twists and turns in a chaotic manner, continually evolving
and never repeating itself. How can we make definite predictions
about such a motion? It is no accident that nearly all theories of
turbulence are statistical theories. For instance, in the case of a
cigarette plume some theory might try to estimate the time-averaged
concentration of smoke at a particular location, or perhaps the time-
averaged width of the plume at a particular height. No theory will
ever be able to predict the exact concentration at a particular location
and at a particular time. So the science of turbulence is largely about



Figure 1.13 Schematic representation of
flow over a sphere at Re=2 x 10"

(a) snapshot of the flow as illustrated by dye
injected into the boundary layer; (b) time-
averaged flow pattern as seen in a time-lapse
photograph. See also Plate 4 for the actual
flow at Re=2 x 10" and 2 X 10°.

Different scales in a turbulent flow

making statistical predictions about the chaotic solutions of a non-
linear partial differential equation (the Navier-Stokes equation).

1.6 Different scales in a turbulent flow: a glimpse
at the energy cascade of Kolmogorov and Richardson

One gets a similar impression when making a drawing of a rising cumulus
from a fixed point; the details change before the sketch can be completed. We
realise that big whirls have little whirls that feed on their velocity, and little
whirls have lesser whirls and so on to viscosity. (L.F. Richardson 1922)

Let us now try to develop a few elementary theoretical ideas. We have
already seen that a turbulent flow which is steady-on-average contains,
in general, a mean flow plus a random, fluctuating component of
motion (Figure 1.2). In the case of Taylor’s experiment, for example,
the mean flow is the array of (turbulent) Taylor cells while in
Reynolds’ experiment there is a mean axial flow in the pipe. Let
us denote time-averages by an overbar. Then at each location in a

steady-on-average flow we have
u(x, t) = u(x) +u'(x,t)

where u’ is the random component of motion. The difference
between u and u is illustrated in Figure 1.13 which shows the
instantaneous and time-averaged flow over a sphere of diameter d.
Note that, although the flow is turbulent, u(x) is a smooth, ordered
function of position. Note also that u, and hence u’, is highly dis-
ordered in space.

We shall see shortly that, at any instant, u’ consists of a random
collection of eddies (vortices). The largest of these eddies have a size

17
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comparable with the characteristic geometric length scale of the mean
flow (d in Figure 1.13). However, most of the eddies are much smaller
than this and indeed there are usually eddies which are very small
indeed. For example, if the mean eddy size is, say, 1cm, we can
usually find eddies of size 0.1 mm, or even smaller. The size of the
smallest eddies depends on the Reynolds number of the turbulence, as
we shall see. For the present purposes, however, the details are not
important. The key point to grasp is that, at any instant, there is a
broad spectrum of eddy sizes within fully developed turbulence. This
is nicely illustrated in Leonardo’s famous sketch of water falling into a
pool. (See Plate 3.)

Now the rate at which kinetic energy is dissipated in a fluid is
&= 2vS;;S; per unit mass (consult Chapter 2). Here Sj; is the strain rate
tensor, Sy = 3(Ou;/0x; + Ou;/0x;). Thus, dissipation is particularly
pronounced in regions where the instantaneous gradient in velocity,
and hence the shear stress, is large. This suggests that the dissipation
of mechanical energy within a turbulent flow is concentrated in the
smallest eddies, and this turns out to be true.

Let us now consider turbulence where Re = ul/v, is large. Here u is
a typical value of |u’| and [ is the typical size of the large-scale turbu-
lent eddies. The observation that there exists a broad spectrum of eddy
sizes, and that dissipation is associated predominantly with the smal-
lest eddies, led Richardson to introduce the concept of the energy
cascade for high-Re turbulence.

The idea is the following. The largest eddies, which are created by
instabilities in the mean flow, are themselves subject to inertial
instabilities and rapidly break-up or evolve into yet smaller vortices.”
In fact, the lifespan of a typical eddy is rather short, of the order of its
so-called turn-over time, [/u. Of course, the smaller eddies are
themselves unstable and they, in turn, pass their energy onto even
smaller structures and so on. Thus, at each instant, there is a continual
cascade of energy from the large scale down to the small (Figure 1.14,
Plate 3). Crucially, viscosity plays no part in this cascade. That is, since
Re =ul/v is large, the viscous stresses acting on the large eddies are
negligible. This is also true of their offspring. The whole process is
essentially driven by inertial forces. The cascade comes to a halt,
however, when the eddy size becomes so small that Re, based on the
size of the smallest eddies, is of order unity. At this point the viscous
forces become significant and dissipation starts to become important.
Thus we have a picture of large-scale eddies being continually created
by the mean flow, and these eddies then breaking up through a
sequence of inviscid instabilities into finer and finer structures. Energy

7 The term ‘break-up’ is used rather loosely here to mean that energy is progressively
transferred from large eddies to smaller ones.



Figure 1.14 A schematic representation of
the energy cascade (after Frisch 1995). See
also Leonardo’s sketch—Plate 3.

Different scales in a turbulent flow
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is destroyed only in the final stages of this process when the structures
are so fine that Re, based on the small-scale structures, is of order
unity. In this sense viscosity plays a rather passive role, mopping up
whatever energy cascades down from above.

Let us now see if we can determine the smallest scale in a turbulent
flow. Let # and v represent typical velocities associated with the lar-
gest and smallest eddies respectively. Also, let | and # be the length
scales of the largest and smallest structures. Now we know that most
eddies break-up on a timescale of their turn-over time (all of the
experimental evidence confirms that this is so), and so the rate at
which energy (per unit mass) is passed down the energy cascade from
the largest eddies is,

I~ u/(/u) =u’/L

When conditions are statistically steady this must match exactly the
rate of dissipation of energy at the smallest scales. If it did not, then
there would be an accumulation of energy at some intermediate scale,
and we exclude this possibility because we want the statistical struc-
ture of the turbulence to be the same from one moment to the next.
The rate of dissipation of energy at the smallest scales is,

&~ I/Sij Si]'

where §j; is the rate of strain associated with the smallest eddies, S;~
v/n. This yields

e~ v(v/n?).

Since the dissipation of turbulent energy, &, must match the rate at
which energy enters the cascade, II, we have,

WL~ v(v /). (1.1)
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Figure 1.15 The influence of Re on the
smallest scales in a turbulent wake. Note that
the smallest eddies are much smaller in the
high-Re flow. (After Tennekes and Lumley
1972.)
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However, we also know that Re based on v and # is of order unity
i /v~ 1. (1.2)

Combining these expressions we find

n~Re > or  p~(F)e)* (1.3)

v ~ uRe V/* or v~ (ve)* (1.4)

where Re is based on the large-scale eddies, Re —ul/v. In a typical
wind tunnel experiment we might have Re ~ 10’ and [~ 1cm. The
estimate above suggests # ~ 0.06 mm, so much of the energy in this
flow is dissipated in eddies which are less than a millimetre in size!
Evidently the smallest scales in a turbulent flow have a very fine
structure. Moreover, the higher the Reynolds number, the finer the
small-scale structures. (This is illustrated in Figure 1.15 which shows
two nominally similar flows at different values of Re.) The scales # and
v are called the Kolmogorov microscales of turbulence while [ is called
the integral scale.

Now the arguments leading up to (1.1)—(1.4) are more than a little
heuristic. What, for example, do we mean by an eddy (is it spherical,
tubular, or even sheet-like) or by the phrase ‘eddy break-up™ More-
over, how do we know that there really is a cascade process in which
eddies ‘break up’ through a sequence of instabilities, creating inter-
mediate structures all the way from [ down to #? Despite these reser-
vations, estimates (1.1) to (1.4) all turn out to conform remarkably
well to the experimental data. Indeed, they represent some of the
more useful results in turbulence theory!
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The closure problem of turbulence

1.7 'The closure problem of turbulence

Had I been present at the Creation, I would have given some useful hints for a
better ordering of the universe. (Alfonso the Wise of Castile ~ 1260)

Figure 1.8 tells us something interesting about turbulence. It seems
that, despite the random nature of u(x, t), the statistical properties of
the velocity field, such as u(x) and u?(x), are quite reproducible. This
suggests that any predictive theory of turbulence should work with
statistical quantities, and indeed this is the basis of most theoretical
approaches. The problem then arises as to how to derive dynamical
equations for these statistical quantities. The starting point is invari-
ably Newton’s second law. When applied to a lump of fluid this takes
the form of the Navier-Stokes equation (see Chapter 2, Section 2.1),

Ou
P = —p(u-V)u— Vp+ prViu. (1.5)

The terms on the right of (1.5) represent inertial, pressure, and viscous
forces respectively (p is the fluid pressure and v the viscosity). The
details of (1.5) are, for the moment, unimportant. It is necessary only
to recognize that u obeys an equation of the form,

Ou
E—FI(H,P)-

Now, in an incompressible fluid u is solenoidal, V -u=0, and so an

equation for p may be obtained by taking the divergence of (1.5):
Vi(p/p) ==V - (u:Vu).

In an infinite domain this may be inverted using the Biot-Savart law
(see Chapter 2, Section 2.2) to give

p(x) *fn/—[v ACEAL)

x — x|

and so p is uniquely determined by the instantaneous distribution of
velocity. It follows that (1.5) may be rewritten in the symbolic form

Ou
i Fy(u). (1.6)

This is a perfectly deterministic equation and so, for given initial
conditions, we can integrate forward in time to find u(x, t). In practice
this would have to be done numerically, and because u is so con-
voluted and chaotic, such an integration requires a vast computer,
even for very simple geometries. Nevertheless, we can, in principle,
integrate (1.6) to determine u(x, t).

However, for many purposes it is not one realization of u(x, t)
which is important, but rather the statistical properties of u, such as u
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and (u')®. After all, the details of u are chaotic and vary from one
realization of a flow to the next, while the statistical properties of u
seem to be well behaved and perfectly reproducible. So the focus of
most ‘turbulence theories’ is not the determination of u(x, t) itself, but
rather its statistical properties. There is an analogy here to the statist-
ical theories of, say, a gas. We are less interested in the motion of every
gas molecule than in its statistical consequences, such as pressure.

It is natural, therefore, to try and develop a theory in which a, (u’)’
etc play the central role, rather than u(x, t). This, in turn, requires that
we have a set of dynamical equations for these statistical quantities
which is in some ways analogous to (1.6). Actually, it turns out to be
possible to manipulate (1.6) into a hierarchy of statistical equations of
the form,

— [certain statistical properties of u]

ot
= F (other statistical properties of u). (1.7)

We shall see how this is achieved in Chapter 4 where we shall discover
something extraordinary about system (1.7). It turns out that this
system of equations is not closed, in the sense that, no matter how
many manipulations we perform, there are always more statistical
unknowns than equations relating them. This is known as the closure
problem of turbulence, and it arises because of the non-linear term on the
right of (1.5). In fact, this closure problem is a common characteristic
of non-linear dynamical systems, as illustrated by Example 1.1.

It is not possible to overstate the importance of the closure pro-
blem. It has haunted the subject from its very beginnings and we are
no closer to circumventing this difficulty than we were when
Reynolds first performed his famous pipe flow experiment. In effect,
the closure problem tells us that there are no rigorous, statistical
theories of turbulence! Those theories which do exist invariably
invoke additional heuristic hypotheses. Of course, these stand or fall
on the basis of their success in explaining the experimental evidence.
This gloomy conclusion has led to the oft quoted phrase: ‘turbulence
is the last unsolved problem of classical physics’.®

® There have been a multitude of attempts to plug this gap by introducing additional,
ad hoc, equations. Typically these relate certain statistical quantities to each other, or
else propose relationships between the mean flow and the state of the turbulence. Either
way, these additional hypotheses are empirical in nature, their plausibility resting on
certain experimental evidence. The resulting closed set of equations are referred to as a
turbulence closure model. Unfortunately, these models tend to work only for a narrow class
of problems. Indeed, in many ways we may regard turbulence closure models as nothing
more than a highly sophisticated exercise in interpolating between experimental data
sets. This depressing thought has led some to give up all hope of constructing a theory
(or theories) of turbulence. The whimsical advice of W.C. Fields comes to mind: If at
first you don’t succeed, try, try again. Then quit. No use being a damn fool about it.”



Is there a ‘theory of turbulence™

It seems that nature (God?) has a nice sense of irony. On the one
hand we have a physical quantity, u, which behaves in a random
fashion, yet is governed by a simple, deterministic equation. On the
other hand the statistical properties of u appear to be well-behaved
and reproducible, yet we know of no closed set of equations which
described them!

Example 1.1 Consider a system governed by the equation du/dt =
—u”. Suppose that u is given a random value between 1 and 2 at t=0
and we observe the subsequent trace of u(t). We repeat the experi-
ment 1000 times where each time u(0) = u, is chosen randomly from
the range 1-2. We are interested in the expected value of # at any
instant t, that is, the value of u at time t obtained by averaging over a
large number of experiments. Let us denote this average by (u)(t),
where (~) means ‘averaged over many experiments’. Of course, our
equation may be solved explicitly for # and hence we find that
(™) = ((u, ' +1)). Suppose, however, that we did not spot that our
equation has an exact solution. Instead we try to find an evolution
equation for <u > which we can solve explicitly. Simply taking the
average of our governing equation will not work since we end up with
d(u)/dt = —(u*), which introduces the new unknown (u”). Of course,
we can find an evolution equation for (#°) by multiplying our gov-
erning equation by u. However, this involves (#”), and so we still have
aproblem. Show that, if we try to establish a hierarchy of evolution equa-
tions for the variables (4") then there are always more unknowns than
equations. This is reminiscent of the closure problem of turbulence.

1.8 Is there a ‘theory of turbulence™

At one time it was thought that there might be some kind of ‘universal
theory of turbulence’, valid under a wide range of circumstances. That
is to say, theoreticians hoped that, just as in the kinetic theory of
gasses, one might be able to average out the apparently random
motion of individual fluid lumps (atoms in the case of kinetic theory)
and produce a non-random, macroscopic, statistical model. In the case
of turbulence such a model might, perhaps, predict the rate of energy
transfer between the mean flow and the turbulence, the distribution of
energy across the different eddy sizes, and the average rate of dispersal
of a pollutant by turbulent mixing. It would not, of course, predict the
detailed evolution of every eddy in the flow.

Unfortunately, after a century of concerted effort, involving engin-
eers, physicists, and mathematicians, no such theory has emerged.
Rather, we have ended up with a multitude of theories: one relevant
to, say, boundary layers, another to stratified flows, yet an other to
magnetohydrodynamic turbulence, and so on. Worse, each theory
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invokes non-rigorous hypotheses, usually based on experimental
observations, in order to make useful predictions. It is now generally
agreed that there is no coherent ‘theory of turbulence’. There are
many problems and many theories.”

Just occasionally, however, we get lucky and the odd universal
feature of turbulence emerges. The most commonly quoted example
is Kolmogorov’s theory of the very small eddies, whose statistical
properties appear to be nearly (but not completely) universal, that is,
the same for jets, wakes, boundary layers, etc. Another example is the
behaviour of a turbulent shear flow very close to a smooth wall
where, again, certain near-universal statistical properties are found.
However, such universal laws are the exception and not the rule.

Of course, this is a profoundly unsatisfactory state of affairs for, say,
the astrophysicist or structural engineer to whom the effects of turbu-
lence are usually just a small part of a bigger picture. Such researchers
usually want simple models which parameterize the effects of turbu-
lence and allow them to focus on the more interesting problems at
hand, such as quantifying how a star forms or a bridge oscillates in a
high wind. So when the structural engineer or the physicist turns to
his colleague working in fluid mechanics and asks for a ‘turbulence
model’, he or she is usually met with a wry smile, a few tentative

equations, and a long string of caveats!

1.9 The interaction of theory, computation,
and experiment

The danger from computers is not that they will eventually get as smart as
men, but we will meanwhile agree to meet them halfway. (Bernard Avishai)

Given the difficulties involved in developing rigorous statistical
models of turbulence, and the rapid development of computer power,
it might be argued that the way forward is to rely on numerical
simulation of turbulence. That is, given a large enough computer, we
can readily integrate (1.6) forward in time for a given set of initial
conditions. So it would seem that the mathematician or physicist
interested in the fundamental structure of turbulence can perform
‘numerical experiments’, while the engineer who needs answers to a
particular problem can, in principle, simulate the flow in question on
the computer. This is not entirely a pipe-dream. Researchers have
already performed numerical simulations which capture not only the

® It seems likely that Horace Lamb saw the way the wind was blowing at an early
stage if a quote, attributed to Lamb by S. Goldstein, is correct. Lamb is reputed to have
said: Tam an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics and the other is the
turbulent motion of fluids. About the former I am rather optimistic” (1932).
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mean flow, but every turbulent eddy, right down to the Kolmogorov
microscale.

There is a catch however. Suppose, for example, that we wanted to
simulate the effects of a strong wind on a tall chimney, say 100 m high
(Plate 2). We might be interested in the drag forces exerted on the
structure, or perhaps in the turbulence generated in the wake of the
chimney. To fix thoughts, suppose that the integral scale of the turbu-
lence in the wake is [ = 0.3 m, and that the typical velocity of a large-
scale eddy is # =2m/s. The Re for the turbulence is then Re =ul/
v~0.5x10" and from (1.3) the Kolmogorov microscale is
7 ~ 0.1 mm. It is extraordinary that much of the dissipation of energy
surrounding this 100 m tall chimney occurs in turbulent structures
which are only 1 mm or so in size! Moreover, the turn-over time of
the smallest eddies is very rapid, #/v~10">s. Now suppose we
wished to simulate this flow for 2 min and that the speed and direction
of the wind changes during this time. Then we would have to com-
pute flow structures (in the mean flow and the turbulence) whose
dimensions varied from 0.1 mm to 100m and whose characteristic
timescales span the range 10 °~100s! Such a monumental calculation
is well beyond the capacity of any computer which exists today, or is
likely to exist for quite some time.

The most which can be achieved at present is to perform numerical
simulations at rather modest values of Re (so that # is not too small)
and in extremely simple geometries. The geometry favoured by those
investigating the fundamental structure of turbulence, say a cloud of
turbulence slowly decaying under the influence of viscosity, is the
so-called periodic cube. This is a cubic domain which has a special
property: whatever is happening at one face of the cube happens at the
opposite face. Of course, a freely evolving cloud of turbulence is, in
reality, anything but periodic, and so this artificial periodicity must be
enforced as a rather strange kind of boundary condition on the calcu-
lation. Periodic cubes are popular because they lend themselves to
particularly efficient (fast) numerical algorithms for solving the
Navier-Stokes equations. Nevertheless, even in this particularly simple
geometry it is difficult to achieve values of Re (based on the integral
scale) much above 10°-10". (Most flows of interest to the engineer are
in the range 10°-10%.)

Periodic cubes lend themselves to efficient simulations. However,
there is a price to pay. The forced periodicity of the turbulence is quite
unphysical. It ensures that the turbulence is statistically anisotropic at
the scale of the box (consult Chapter 7). It also enforces unphysical,
long-range statistical correlations on the scale Lpox (see Figure 1.16).
(What is happening on one side of the box is perfectly correlated to
events at the other side.) To obtain results which are representative of
real turbulence, and are not polluted by the presence of the artificial
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Figure 1.16 Flow in a periodic cube. Space is
divided up into an infinite number of cubes
and it is arranged for the flow in each box to
be identical at any instant. We focus attention
on just one cube and study the evolution of
the turbulence within it. The dynamics in any
one cube is influence by the pressure field set
up by the surrounding cubes and so is not
representative of real turbulence. However, if
Lgox is much greater than the eddy size then
the hope is that the influence of the
surrounding cubes is small.
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boundary conditions, it is necessary to have Lgox > [, where [ is the
integral scale (size of the large eddies). This is particularly problematic
if information is required about the large eddies in the turbulence, as
these are the most sensitive to the enforced periodicity. In such cases
one needs, say, Lgox/l ~ 20-50 (see Section 7.2). (The problem is less
severe if one is interested in the small eddies, where Lpox ~ 61 may be
sufficient.) Unfortunately, limitations in computing power means that
it is very difficult to achieve simultaneously both Lpoyx/l~ 50 and
Re ~ 10°. One is reminded of Corrsin’s quip, “The foregoing estimate
(of computing power) is enough to suggest the use of analogue instead
of digital computation; in particular, how about an analogue consist-
ing of a tank of water?’ (1961). Great advances have been made since
1961, but Corrsin’s words still carry a certain resonance.

It seems that, despite great strides in computational fluid dynamics
(CFD), we are still a long way from performing direct numerical
simulations (DNS) of flows of direct interest to the engineer. The most
that we can achieve are simulation at modest Re and in extremely
simple geometries (e.g. periodic cubes). These simulations provide
valuable insights into the structure of turbulence, thus bolstering our
understanding of the phenomena. However, they cannot be used to
answer practical questions such as ‘how quickly will the pollutant
belching out of a chimney disperse?’, or ‘will my chimney fall over in a
high wind?” To answer such questions engineers typically resort to
experiment or to semi-empirical models of turbulence, such as the
so-called k—& model. Sometimes these models work, and sometimes
they do not. To understand why and when these models fail requires a
sound understanding of turbulence and this provides one of the
motivations for studying turbulence at a fundamental level. The other

motivation, of course, is natural curiosity.

Exercises

1.1 Show that there is an exact analogy between two-dimensional buoyancy-
driven flow in a thin, horizontal layer and axisymmetric flow with swirl in a
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narrow annulus. Now show that Rayleigh’s stability criterion for inviscid,
swirling flow follows directly from the observation that heavy fluid overlying
light fluid is unstable. (Rayleigh’s theorem says that a flow is unstable if (1 1)*
decreases with radius, 1y being the azimuthal velocity in (v, 8, z) coordinates.)

1.2 Estimate the Re at which transition occurs in the cigarette plume of
Figure 1.7. (Note that most flows of interest to the engineer are in the range
Re = 10°-10%)

1.3 'The rate, II, at which energy is passed down the energy cascade must be
independent of the size of the eddies in statistically steady turbulence,
otherwise energy would accumulate at some intermediate scale. Let (Av)* be
the kinetic energy of a typical eddy of size r, where n <r<1. (Here
is the Kolmogorov microscale and [ is the integral scale.) On the assumption
that eddies of size r break-up on a timescale of their turn-over-time, /(Av),
show that

(AV)Z ~ 1—[2/3 72/3 ~ 82/3 1’2/3.

Now show that this scaling is compatible with the Kolmogorov microscales in
the sense that v and # satisfy the relationship above.

1.4 In a volcanic eruption a turbulent plume is created in which the integral
scale of the turbulence is [~ 10 m and a typical turbulent velocity is 20 m/s. If
the viscosity of the gas is 10~ ° m’/s, estimate the size of the smallest eddies in
the plume. Compare this with the mean-free-path length for air.

1.5 In wind tunnel turbulence generated by a grid the kinetic energy per unit
mass is found to decay approximately at a rate 4> ~t~ '*’7. On the assumption
that the large eddies break-up on a time-scale of their turn-over time show that
4l is approximately constant during the decay. [I ~ 4’0’ is called Loitsyansky’s

invariant.]

Suggested reading

Corrsin, S. (1961) Turbulent Flow. Am. Sci., 49(3). (A mere 24 pages crammed
with physical insight.)

Tennekes, H. and Lumley, J.L. (1972) A First Course in Turbulence. MIT Press.
(Stll one of the best guides for the beginner. Consult chapter 1 for an
excellent introduction to turbulence.)

Tritton, D.J. (1988) Physical Fluid Dynamics. Clarendon Press. (A beautiful book
written from the perspective of a physicist. The experiments of Reynolds,
Bénard, and Taylor are discussed in chapters 2, 17, and 22.)
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CHAPTER 2

The equations of fluid mechanics

In reflecting on the principles according to which motion of a
fluid ought to be calculated when account is taken of the tan-
gential force, and consequently the pressure not supposed the
same in all directions, I was led to construct the theory explained
in this paper...I afterwards found that Poisson had written a
memoir on the same subject, and on referring to it I found that
he had arrived at the same equations. The method which he
employed was however so different from mine that I feel
justified in laying the latter before this Society...The same
equations have also been obtained by Navier in the case of an
incompressible fluid, but his principles differ from mine still
more than do Poisson’s.

Stokes (1845)

It is a tribute to Stokes that the modern derivation of the viscous
equations of motion is virtually identical to that set out by him one
and a half centuries ago.

This chapter is intended for those who have had only a limited
exposure to fluid mechanics. Our aim is to derive and discuss those
laws of fluid mechanics which are particularly important for an
understanding of turbulence. We shall restrict ourselves to fluids
which are incompressible and Newtonian. (See equation (2.4) and
associated footnote.) The physical principles at our disposal are:

(1) Newton’s second law applied to a continuum;

(2) a constitutive law, called Newton’s law of viscosity, which relates
shear stresses in a fluid to the rate of distortion of fluid elements;
and

(3) the conservation of mass (i.e. what flows in must flow out).

When we put these all together we obtain a simple partial differential
equation (the Navier-Stokes equation) which governs the motion of
nearly all fluids. This equation is deceptively simple. It looks no more
complex than a wave equation or a diffusion equation. Yet we know
that the diffusion equation always leads to simple (almost boring)
solutions. The Navier-Stokes equation, on the other hand, embodies
such rich and complex phenomena as instabilities and turbulence.
Clearly there must be something special about the Navier-Stokes
equation. There is. It turns out that this equation is non-linear in the
sense that the dependent variable, u(x, t), appears in a quadratic form.
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Figure 2.1 A blob of fluid moving with
velocity u.

Figure 2.2 Viscous stresses acting on a
rectangular element.
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It is this seemingly innocent non-linearity which leads to such
unpredictable phenomena as solar flares and tornadoes.

2.1 'The Navier-Stokes equation
2.1.1  Newton’s second law applied to a fluid

Let us apply Newton’s second law to a lump of fluid of volume 6V as
it moves through a flow field (Figure 2.1). We have,

(pov) % = —(Vp)oV + viscous forces. (2.1)

In words this says that the mass of the fluid element, pdV, times its
acceleration, Du/Dt, is equal to the net pressure force acting on the
lump plus any viscous forces arising from viscous stresses. The fact
that the net pressure force can be written as —(Ap)oV follows from

Gauss’ theorem in the form
$ Cois= [ (-Ipav = ~(vpov
v

where the surface integral on the left is the sum of all the elementary
pressure forces, —pd$, acting on the surface S of the blob of fluid.
The task now is to evaluate the viscous term in (2.1). Suppose the
fluid lump is instantaneously in the form of a rectangular element with
edges dx, dy, dz as shown in Figure 2.2. The stresses arising from the
presence of viscosity comprise both shear stresses, t,,, 1y, etc., as well

as normal stresses, T,,, Ty, and 7,, which supplement the normal

vy
stresses due to pressure. These viscous stresses can influence the
trajectory of a fluid lump because any imbalance in stress will lead to a
net viscous force acting on the fluid element. For example, a difference
between 7., at the top and the bottom of the element will produce a

net force in the x-direction of magnitude

fo = (0704 = [(arz"> dz} dcdy.
0z

Gathering all such terms we find the net viscous force in the

x-direction is

Ot N Oy N OTox 5V
o lox 9y 0Oz '
We rewrite this in the abbreviated form,
3’ij
(= —=0V
2 Ox

j
where it is understood that there is a summation over the repeated
index j. (Those unfamiliar with tensor notation may wish to consult
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Appendix I.) Similar expressions can be found for f; and f; and it is
evident that the net viscous force in the ith direction acting on the
rectangular element is,

(91]-1-

i — —(SV
fi=g
Thus, (2.1) becomes

D 0ty
A v S Ui (2.2)
Ox;

p— =

Dt
This is as far as Newton’s second law will take us. If we are to
progress we need additional information. There are two more prin-
ciples available to us. First, we have conservation of mass which may

be expressed as V -(pu)= — dp/0t. Since we are treating p as a
constant this reduces to the so-called continuity equation

V-u=0o. (2.3)

Next we need a constitutive law relating 7;; to the rate of deformation
of fluid elements. Most fluids obey Newton’s law of viscosity,
which says,’

T, = pv 8ui+% (2.4)
y*p 8xJ 8x1v ’ ]

To understand where this comes from consider the simple shear flow
u = (1,(y),0,0) shown in Figure 2.3(a). Here the fluid elements slide
over each other and one measure of the rate of sliding is the angular
distortion rate, dy/dt, of an initially rectangular element. In this simple
flow a shear stress, 7, is required to cause the relative sliding of the
fluid layers. Moreover, it is reasonable to suppose that 7, is directly
proportional to the rate of sliding dy/dt, and we define the constant of
proportionality to be the absolute viscosity u=pr. It follows
that: 7, = pv(dy/dt). However, it is clear from the diagram that

¥
dy /dt = Ou,/ Oy and so for this simple flow we might anticipate,

Ou,
Tyx = pv E .
Of course, this is just a special case of (2.4). This kind of argument may
be generalized in an obvious way. For simplicity we restrict ourselves
to two-dimensional motion. Consider the element of fluid shown in

Figure 2.3(b). In a time 0t it experiences an angular distortion of,

Ou,  Ou,
(3’)1 = 5))1 +5’)12 = (a—yﬁLa)ét

! We shall use kinematic viscosity, v, rather than absolute viscosity, p=pv,
throughout. Fluids which obey (2.4) are called Newtonian fluids.
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Figure 2.3 (a) Distortion of an element in a
parallel shear flow. (b) Distortion of a fluid
element in two-dimensions.
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and so the two-dimensional generalization of T,, = prOu,/Jy is

Ou,  Ouy
Tay = Tyx = PV 8_y+§ .

Equation (2.4) is simply the three-dimensional counterpart of this.
It is conventional to introduce the term strain-rate tensor for the

quantity
1 {3111- 8u]}

(2.5)

Sy = - 7
=7 |k o,

and so the most compact form of Newton’s law of viscosity is,
Tij == ZpVSU

In any event, substituting (2.4) into our equation of motion (2.2)
yields, after a little work,

Du_ ¢ <£) + vV (2.6)
Dt P



Figure 2.4 (a) Rate of change of temperature
of a fluid element as it moves through a flow
field. (b) Acceleration of a fluid lump in a
steady flow.

The Navier-Stokes equation

This is the Navier-Stokes equation. The boundary condition on u
corresponding to (2.6) is that u = 0 on any stationary solid surface, that
is, fluids ‘stick’ to surfaces. This is known as the ‘no-slip’ condition.
Sometimes it is convenient, though rarely realistic, to imagine a fluid
with zero viscosity. These ‘perfect fluids’ (which do not exist!) are
governed by the so-called Euler equation,

% = -V (%) (2.7)

The boundary condition appropriate to this equation is not u =0, but
rather u-dS = 0 at an impermeable surface, that is, there in no mass

flux through the surface.

2.1.2  The convective derivative

So far we have focused on dynamical issues. We now switch to
kinematics. We have written the acceleration of a fluid lump as
Du/Dt. The special symbol D( - )/Dt was first introduced by Stokes and
means the rate of change of a quantity associated with a given fluid element.
It is called the convective derivative and should not be confused with
O(-)/0t which is, of course, the rate of change of a quantity at a fixed
point in space. For example, DT/Dt is the rate of change of tem-
perature, T(x, t), of a fluid lump as it moves around, whereas 0T/ 0t is
the rate of change of temperature at some fixed point in space through
which a succession of particles will pass. Thus the acceleration of a
fluid element is Du/Dt and not du/0t.

An expression for D(-)/Dt may be obtained using the chain rule.
Perhaps it is easier to develop the ideas in terms of scalar fields and so
let us consider, for the moment, the temperature field, T(x,t). (See
Figure 2.4(a).) The change in T due to small variations in x, y, z, and
t is, 0T =(0T/0t)ot+ (OT/Ox)0x+ --- Since we are interested in
changes in T following a fluid particle we have dx =u,0t etc. and so

DT 9T 9T 9T  IT IT

Dt—at+uxa+uya+uzg—a+(u‘V)T. (23)

The same expression applies to each component of any vector field,

A(x,t), and so we have
DA O0A
I — . A. 2.9
o g T V) (2.9)

Substituting u for A gives us an explicit expression for the acceleration
of a fluid particle,

Du Ou
- (u-Vu (2.10)
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and so the Navier-Stokes equation may be rewritten as,

Du Ou (P 5
E—EJr(u Viu = v(p)+yv u. (2.11)

The crucial point to note here is that (2.11) contains a non-linear
(quadratic) term in u. It is this which leads to most of the complex and
rich phenomena of fluid mechanics and in particular to turbulence.

In order to better understand why (u - V)u appears on the left-hand
side of (2.11) it is convenient to restrict ourselves to steady flows,
that is, flows in which u is a function only of position. In such flows
Ou/0t=0, the shape of the streamlines is fixed for all ¢, and the
streamlines represent particle trajectories for individual fluid Tumps’.
Consider one such lump moving along a streamline as shown in
Figure 2.4(b). Let s be the curvilinear coordinate measured along the
streamline and V(s) be the speed |u|. Since the streamline represents a
particle trajectory we have, from elementary mechanics,

) d v?
(acceleration of lump) = V—&, — —&,. (2.12)
ds R
Here R is the radius of curvature of the streamline and &, and &, are
unit vectors as shown in Figure 2.4(b).

Compare this with (2.10). Since du/0t=0, this would have us
believe that the acceleration of the lump is (u-V)u. In fact, if we
rewrite (u- V)u in curvilinear coordinates we find, after a little algebra

(u-Viu= Vd—Vét — Lzén (2.13)

ds R

and so (2.12) and (2.10) do indeed give the same result. The physical
meaning of (u- V)u is now clear. Even in steady flows individual fluid
lumps experience an acceleration because, as they slide along a
streamline, they pass through a succession of points at which u is, in
general, different. Thus, as we follow the fluid element, u changes and
its rate of change (in a steady flow) is (u- V)u.

2.1.3 Integral versions of the momentum equation

Now (2.11) is applied sometimes in differential form and sometimes in
integral form. If we have a fixed volume (a so-called control volume)
then the integral of (2.11) throughout V yields, with the help of Gauss’
theorem,

0
—/ pwdV = 7( w(pu - dS) — jl{pdS + (viscous term).
ot Jy s

S (2.14)
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This can be interpreted in terms of a linear momentum budget for V.
Since pu-dS is the rate of flow of mass through surface element dS,
the first integral on the right represents the net flux of linear
momentum out of V. Thus (2.14) expresses the fact that the total
linear momentum in V can change because momentum is transported
across the bounding surface S, or else because pressure forces or
viscous forces act on the boundary. Note that, since u; =V - (ux;), the
net linear momentum in any closed domain is necessarily zero.
(V- (ux;) integrates to zero because of Gauss’ theorem and the
boundary condition u-dS =0.)

A second integral equation can be derived from (2.11). First we
expand the convective derivative of x X u to give x X Du/Dt and then
use (2.11) to rewrite the acceleration, Du/Dt, in terms of pressure and
viscous forces:

Du+ DX>< ><Du
- Zxu=px X —
Dt th p

= (x ) = px x
P W = px Dt
= V X (px) + (viscous term).

Here we have taken advantage of the fact that Dx/Dt=wu and
—x X Vp=V X (px). Clearly this is an angular momentum equation
for the fluid. It integrates to give,

%[}p(x X u)dV =— jlg(x X u),(pu - dS)
— ?{ x X (pdS) + (viscous term).

S

(2.15)

This has a similar interpretation to (2.14). That is to say, the angular
momentum in V may change because angular momentum is trans-
ported across the bounding surface S or because of the action of a
viscous or pressure torque acting on S.

2.1.4  The rate of dissipation of energy in a viscous fluid

We close Section (2.1) with a discussion of energy. In particular, we
quantify the rate at which mechanical energy is converted into heat by
friction. Let us start by calculating the rate of working of the viscous
stresses in a Newtonian fluid. Suppose we have a volume V of fluid
whose boundary, S, is subject to the viscous stresses t;; = 2pvS;;. Then
the rate of working of these stresses on the fluid is

W = %ul(rydsj)

That is to say, the ith component of the viscous force acting on surface
element dS is 7;dS;, and so the rate of working of this force is u;(7;dS)).
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From Gauss’s theorem we may rewrite W as

W—/i[ 7;]dV

and so we conclude that the rate of working of 7;; per unit volume is

i[uifij] :%m +fg%.

Ox; Ox; Ox;
(Actually, this equation may be obtained directly from a consideration
of the work done on a small cube by 7;.) It turns out that the two
terms on the right of this expression represent quite different effects,
as we now show. First we note that the net viscous force per unit
volume acting on the fluid is f; = 9t;;/ Ox;, and so the first term on the
right is fu;. The second term, on the other hand, can be rewritten as,

Ouw; 1 Oow, 1 Ou; Ou;
T — — | Ty + Ti| =— = — |Tii = Tii——| = ’Ci'si'
p 2[] J}axj > ]899+]8xi 94

since 7;;=1;;. Thus the rate of working of 7;; on the fluid is
0 [uifij]

Ox

J

= ﬁui + Tﬁ SU .

The two contributions on the right both represent changes in the
energy of the fluid, as they must. However, they correspond to two
rather different processes. The first term is the rate of working of the
net viscous force acting on a fluid element. This necessarily represents
the rate of change of mechanical energy of the fluid. The second term
must, therefore, correspond to the rate of change of internal energy
(per unit volume) of the fluid. Thus we conclude that the rate of

increase of internal energy per unit mass is,

&= ﬁ = 2v8;S;.
P

In the absence of work being done by the boundaries [pedV must
represent the rate of loss of mechanical energy to heat as a con-
sequence of viscous dissipation.

We can arrive at the same conclusion via a slightly different route.
If we take the product of (2.6) with u, and note that D(-)/Dt obeys the
usual rules of differentiation, we have

Du D (v

u‘—u——(u—) =-V. Fu} +vu- (V).
Dt Dt\ 2 p

Evidently, we have the makings of a kinetic energy equation. Noting

that,

0 0
vu- (Vi) = uia_xj [/ p] = 8_x] [T/ p] — 208;S;
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our energy equation becomes,

o(u?/2)
ot

= V2] V(i) + ol ] 20835,

(2.16)

This gives, when integrated over an arbitrary, fixed volume V,

% /v (#*/2)dV = —(rate at which kinetic energy is convected
across the boundary)
+ (rate at which the pressure forces do work
on the boundary)
+ (rate at which the viscous forces do work

on the boundary)

v

Conservation of energy tells us that the final term on the right must
represent the rate of loss of mechanical energy to heat. Since this
equation may be applied to a small volume 0V it follows that the rate

of dissipation of mechanical energy per unit mass is simply,
& = 218;S; (2.17)

as anticipated above. It is conventional in some texts to rewrite (2.16)

in a slightly different form. That is, we note that
vu- (Vi) = —v(V xu)’ + V- [ru x (V x u)]

and so (2.16) becomes,

5 (%) = VL6272 plpdat (¥ )l (Y )

(2.18)

This second form is less fundamental than (2.16) but possibly more
useful when dealing with a closed domain, V. In such cases we find,

4 <ﬁ)dv _ 1// (V x u)2av. (2.19)

dt | \ 2

Thus, for a closed domain with stationary boundaries, the total rate of

dissipation of mechanical energy is,

h/MVZ%/&@ﬂVV/bVXM%V. (2.20)
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The quantity @ =V X u is called the vorticity field and ”/2 is called
the enstrophy. We shall return to the concept of vorticity shortly.

2.2 Relating pressure to velocity

Let us summarize the governing equations. We have Newton’s

second law applied to a viscous fluid,

% = —V(p/p) +vViu (2.21)

plus conservation of mass,
V-u=0. (2.22)

We might anticipate that (2.21) and (2.22), subject to the boundary
condition u = 0, represents a closed system. If we look only at (2.21) it
is not obvious that this is so since it contains two fields, velocity and
pressure. However, we may exploit the solenoidal nature of u to
obtain a direct relationship between u and p. Taking the divergence of
(2.21) yields,

Vip/p) ==V (u- Vu).

For infinite domains this may be inverted using the Biot-Savart law
to give,

p(x) = 4% / wd;{. (2.23)

Thus, in principle, we can rewrite (2.21) as an evolution equation
involving only u, and so our system is indeed closed.

The important feature of (2.23), from the point of view of turbu-
lence, is that p is non-local, in the sense that an eddy at x” induces a
pressure field which is felt everywhere in space. Of course, this is a
manifestation of the propagation of information by pressure waves
which, in an incompressible fluid, travel infinitely fast.

The fact that p is non-local has profound implications for the
behaviour of turbulent flows. An eddy which evolves in space at one
location, say x, sends out pressure waves, the distribution of which are
dictated by (2.23). These, in turn, induce far-field pressure forces,
—Vp, which churn up the fluid at large distances from the eddy. Thus
every part of a turbulent flow feels every other part and this means
that eddies which are spatially remote can interact with each other.

Another consequence of (2.23) is that it makes little sense to think
of velocity fields being localized in space. If, at t =0, we specify that u
is non-zero only in some small region, then, for t >0, a pressure field
is established throughout all space and this, in turn, induces motion
at all points via the pressure force Vp. So, even if u starts out as
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localized, it will not stay that way for long. Yet we have been talking
about turbulent ‘eddies’ as if they were structures with a definite size!
Clearly we have to refine our views a little. The first step is to
introduce the vorticity field, @ =V x u. We shall see that, although u
is never localized in space, @ can be. Moreover, while linear
momentum can be instantaneously redistributed throughout space by
the pressure field, vorticity can only spread through a fluid in an
incremental fashion, either by diffusion or else by material transport
(advection). Without doubrt, it is the vorticity field, and not u, which is
the more fundamental.

2.3 Vorticity dynamics
2.3.1 Vorticity and angular momentum

We now explore the properties of the vorticity field defined by
® =V X u. The reason why much attention is given to @ is that it is
governed by an evolution equation which is much simpler than the
Navier-Stokes equation. Unlike u, @ cannot be created nor destroyed
within the interior of a fluid and it is transported throughout the flow
field by familiar processes such as advection and diffusion. Also,
localized distributions of @ remain localized, which is not the case for
the velocity field. Thus, when we talk of an ‘eddy’ in a turbulent flow
we really mean a blob of vorticity and its associated rotational and
irrotational motion.

Let us try to endow @ with some physical meaning. Stokes did not
use the term vorticity. Rather, he referred to w/2 as the angular
velocity of the fluid. This is, perhaps, a better name, as we now show.
Consider a small element of fluid in a two-dimensional flow,
u(x, y) = (uy, y, 0), ®@=1(0, 0, ®,). Suppose that the element is instan-
taneously circular with radius r and bounding curve C. Then, from
Stokes’ theorem,

w,mrt = j{ u-dl (2.24)
C

Let the element have an angular velocity of £, defined as the average
rate of rotation of two mutually perpendicular lines embedded in the
element. Then we might anticipate, from (2.24), that

W mrt = %u -dl = (Qr)2nr

from which
Q=w,/2 (2.25)

The rationale for Stokes’ terminology is now clear. In fact, (2.25)
is readily confirmed by exact analysis. Consider Figure 2.3(b). The
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Figure 2.5 The physical interpretation of
vorticity. (a) The vorticity at x is twice

the angular velocity of a fluid blob
instantaneously passing through x.

(b) Vorticity has nothing at all to do with
global rotation. Fluid elements in a rectilinear
shear flow have vorticity, while those in a free
vortex, #g=k/r, do not.
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anti-clockwise rotation rate of line elements dx and dy are Ju,/Ox and
—Ou, /Oy respectively. According to our definition of Q this gives
Q= (Ou,/ Ox — Ou,/Oy)/2 and so (2.25) follows directly from the
definition @ =V X u.

We note in passing that Figure 2.3(b) illustrates the three effects of
a planar velocity field on a lump of fluid: it can move the lump from
place to place, rotate it at a rate Q = (Ou,/ Ox — Ou,/ y)/2, and distort
it (strain it) at a rate Sy. (This strain has three components: an angular
distortion rate of S,, = (Ou,/0x + Ou,/dy)/2 and two normal strain
rates, Sy, and S,,.) In short, u can translate, rotate, and distort a fluid
element.

These results generalize to three dimensions: the rate of straining of
a fluid element is S;; and the vorticity field @(x) is twice the average
angular velocity of a spherical blob of fluid instantaneously located at x,
o =2£). Thus o gives some measure of the local rotation, or spin, of
fluid elements (Figure 2.5(a)). It is crucial, however, to note that o has
nothing at all to do with the global rotation of a fluid. For example, the
shear flow u = (u,(y), 0, 0) possesses vorticity, yet the streamlines are
straight and parallel. On the other hand, the flow u(r) = (0, k/7,0) in
(r,8,z) coordinates has no vorticity (except at r=0), yet the stream-
lines are circular. This is illustrated in Figure 2.5(b).

Note that the velocity gradients, du;/Ox;, at any one point can
always be decomposed into a combination of strain and vorticity:

au’i _ 1 au’l 6“_7’ 1 8141‘ 8qu - 1
6xj N 2 <8x] + 6x1> + 2 <ax] 6961 - Sij 2£1jkwk

where &, is the Levi-Civita symbol (see Appendix I). Although §;; and
o represent very different processes, one measuring the rate of dis-
tortion of fluid elements and the other representing their rate of
rotation, S; and @ are not independent. This is exemplified by the
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relationship of each to the Laplacian:

0S;i
Vzui =2 8x] = *[V X (D]i.
J

Thus gradients in the strain field are related to gradients in vorticity.
Note, however, that a uniform strain field can exist without vorticity
while a uniform distribution of vorticity can exist without strain.

A question which often arises in turbulence is: do the local velocity
gradients contribute most to the rate-of-stain tensor or to the vorticity
field? In this respect, it is useful to consider the quantity Q defined by

0= _la_m% = _l (Si,s., — lml)
2 Ox; Ox; 2\
which is an invariant of the matrix Ou;/Ox;: invariant in the sense that
its value does not depend on the orientation of the coordinate system.
This is often rewritten in normalized form

- SUSU — 1/2(0.)2)
a SUSU + 1/2(0.)2') ’

Positive values of A tend to be associated with a flow in which there is
a large amount of strain, while negative values of A suggest a flow
dominated by vorticity. Another invariant of the matrix Ju,/0x; is

1 3

The two invariants, Q and R, are sometimes used to classify the local
structure of a flow field. (This is discussed in section 3.6 of Chapter 5.)

Example 2.1 Consider the simple shear flow u,(y)=28y, S=
constant. It can be decomposed into the two velocity fields
u;, = (Sy, Sx,0) and u, = (Sy, —Sx,0). Show that the first represents
irrotational strain (with no vorticity) and the second rigid-body rota-
tion (with no strain). Sketch w, and calculate the orientation of the
principal axes of strain.

Let us now introduce some dynamics. Since @ = 2, it follows that
the angular momentum, H, of a small spherical blob of fluid is,

1
H= Elm (2.26)

where I is its moment of inertia. Now consider a blob which is
instantaneously spherical. Then H will change as a result of the tan-
gential surface stresses alone. The pressure has no influence at the
instant at which the blob is spherical since the pressure forces point

radially inward. Therefore, at one particular instant in time,

DH
o (viscous torque on spherical element).
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Figure 2.6 Stretching a fluid element can
intensify the vorticity.

Tornado

NN\ ANANAN

Figure 2.7 Examples of vortex tubes:
(a) tornado and (b) smoke ring.
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Blob of vorticity

Converging potential flow

Since the convective derivative obeys the usual rules of differentiation
this yields,

Do DI . .
I— = —@—+ 2 x (viscous torque on spherical element).
Dt Dt
(2.27a)
If viscosity is negligible we have, as a special case,
D(lw
D) =0 (2.27b)
Dt

Now (2.27a) holds only at one particular instant and for a blob that is
instantaneously spherical. Nevertheless, at any instant and at any
location we are always free to define such a fluid element. Thus
(2.27a) really holds at every point and at all times, although the
material which instantaneously constitutes the sphere will change
with time and from place to place. There are three immediate con-
sequences of (2.27a, b). First, since pressure is absent from (2.27a) we
would expect ® to evolve independently of p. Second, if @ is initially
zero, and the flow is inviscid, then @ should remain zero in each fluid
particle. This is the basis of potential flow theory in which we set
® =0 in the upstream fluid. Third, if I decreases in a fluid element
(and the viscous torque is small) then (2.27b) suggests that the vorti-
city of that element should increase. For instance, if a blob of vorticity
is embedded in an otherwise potential flow field consisting of con-
verging streamlines, as shown in Figure 2.6, then the moment of
inertia of the element about an axis parallel to @ will decrease, and so
o will rise to conserve H. Thus we can intensify vorticity by
stretching fluid elements. This is referred to as vortex stretching.

We shall confirm all three of these propositions shortly. We close
this section by noting that, since V -(V X @) =0, the vorticity field,
like the velocity field, is solenoidal. Consequently, we can invoke the
idea of vortex tubes and vortex lines which are the analogues of
streamtubes and streamlines. Vortex tubes are simply bundles of
vortex lines. Two familiar examples are a tornado and a vortex ring
(smoke ring) as shown in Figure 2.7. Note that the flux of vorticity
along a vortex tube, @, is constant along the tube since there is no
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leakage of vorticity out the sides of the tube. Moreover, the flux @ is
related to the line integral of u around the tube by Stokes” theorem:

Finally, we note that, in infinite domains, we may invert the rela-
tionship @ = V X u using the Biot-Savart law. This gives

1 !/
u(x) —E/%dx', r=x—x. (2.28)

Of course, there is an analogy to electromagnetism here, where the
current density J is related to the magnetic field, B, by V X B = y,].
We have an analogy in which u<> B and @ <> u,J. (Here y, is the
permeability of free space.) Thus, just as a current loop induces a
poloidal magnetic field, so a vortex ring induces a poloidal velocity
field (Figure 2.7).

Example 2.2 Consider an isolated blob of vorticity and any spherical
volume, V, which encloses the vorticity. Show that the total angular

momentum in V is,

H—/XXudV—/V((D‘X)XdV—%/V(Xz(.o)dv

%/V(x X (x X @))dv.

2.3.2  'The vorticity equation

Let us now derive the governing equation for ®. We start by
rewriting (2.11) in the form,
Ou p u

—=uxm— VC+ vV, c=L4+Z% (2.29)
ot p 2

where C is Bernoulli’s function. This follows from the identity
V(?/2) = (u-Viu+ux e

We now take the curl of (2.29) which yields an evolution
equation for @

aa—(:) =V X [ux o] + vV’o. (2.30)

Since,

Vxuxw)=(® Viu—(u Vo
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(a)

T\__/ O
(b)

D

Figure 2.8 Vorticity can change because:
(a) viscous forces spin up (or slow down) a
fluid element or (b) because the moment of
inertia of that element is changed.
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this is often rewritten in the alternative form

Po (o Viu+ rVio. (2.31)
Dt
We might compare this with our angular momentum equation (2.27),
Dw DI
I— = —o— + 2 X (viscous torque on spherical element).
Dt Dt
It would seem that the terms on the right of (2.31) represent: (i) the
change in moment of inertia of a fluid element due to stretching of
that element; and (ii) the viscous torque on the element. In short, the
vorticity of a fluid blob may change because the blob is stretched,
causing a change in moment of inertia, or else because the blob is spun
up or slowed down by the viscous stresses (Figure 2.8).

It is instructive to consider the case of two-dimensional motion:
u(x, y) = (uy, 4y, 0), ®@=(0,0, ®). Here the first term on the right of
(2.31) disappears. Consequently, there is no vortex stretching in planar
flows and the vorticity in a fluid element will change because of

. 2
viscous forces alone.” We have,

— = 1Vo. (2.32)
Dt
Compare this with the governing equation for temperature, T, in a
fluid

DT
o VAT (2.33)

where o is the thermal diffusivity. Equations of this type are referred
to as advection—diffusion equations. Evidently, in planar flows, vorticity
is swept around by the flow and diffuses just like heat.

In order to gain some sense of what equations like (2.32) and (2.33)
represent, consider the case of a wire of diameter d which sits in a
cross flow u and is pulsed with electric current (Figure 2.9). Each time
the wire is pulsed a packet of hot fluid is formed which is then swept
downstream. The temperature field is governed by

DT 9T, OT

- —— = aV?T. 2.34
Dt 8t+uax x ( )

If u is very small then heat soaks through the material by conduction
alone, as if the fluid were a solid:
oT

— ~ aV?T.
ot

% 'This is because the stretching of fluid elements is confined to the x—y plane, whereas
the vorticity points in the z-direction.



Figure 2.9 Advection and diffusion of heat
from a pulsed wire.
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Figure 2.10 Karman street behind a cylinder.

Vorticity dynamics

]} o increasing

!

u increasing

The wire is then surrounded by concentric isotherms. Conversely, if o
is very small, so there is very little diffusion of heat, then

DT

DY
In this case each lump of fluid conserves its heat, and hence its tem-
perature, as it is swept downstream. Thus we obtain a range of flows
depending on the relative values of o« and u (Figure 2.9). In fact, it is
the Peclet number, Pe = ud/o, which determines the behaviour.

Of course, heat is neither destroyed nor created in the interior of
the fluid. Thus [ TdV is conserved for each of the dotted volumes
shown in Figure 2.9. This is readily confirmed by integrating (2.33)

over such a volume and invoking Gauss’ theorem,

D DT
D TdV—/—dV—och{(VT)‘dS—O.
Dt J, . Dt .

(We note in passing that, when dealing with a material volume—a
volume always composed of the same particles—the operation of
D(-)/Dt and [commute, that is, D(TéV)/Dt = (DT/Dt)dV.)

Equation (2.32) tells us that vorticity in a two-dimensional flow is
advected and diffused just like heat, and that the analogue of the
Peclet number is Re =ul/v. The implication is that vorticity, like
heat, cannot be created or destroyed within the interior of a two-
dimensional flow. It can spread, by diffusion, and it can be moved
from place to place by advection, but [wdV is conserved for all
localized blobs of vorticity. A simple illustration of this, which is
analogous to the blobs of heat above, are the vortices in the Karman
street behind a cylinder. The vortices are advected by the velocity field
and spread by diffusion, but the total vorticity within each eddy
remains the same.

Since vorticity cannot be created in the interior of the flow one
might ask where the vorticity in Figure 2.10 came from. After all, the
fluid particles upstream of the cylinder clearly have no angular
momentum (vorticity) yet those downstream do. Again the analogy to
heat is useful. The hot blobs in Figure 2.9 gained their heat from the
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Figure 2.11 Motion adjacent to an
impulsively started plate.
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surface of the wire. Similarly, the vorticity (angular momentum) in the
Karman street originated at the surface of cylinder. In fact, boundary
layers are filled with intense vorticity which has diffused out from the
adjacent surface. This gives us a new way of thinking about boundary
layers: they are diffusion layers for the vorticity generated on a surface.

Let us push this idea a little further. We contend that boundaries
are sources of vorticity, and that vorticity oozes out of them by dif-
fusion, just like heat. The simplest example of this, which may be
confirmed by exact analysis, is the case of a flat plate which sits in a
semi-infinite fluid and is suddenly set into motion with a speed V
(Figure 2.11).

The velocity field u=(u(y),0,0) is associated with a vorticity
@ = — Ou,/ Oy and this, in turn, is governed by the diffusion equation,

dw P w
o oy?

The situation is analogous to the diffusion of heat from an infinite
plate whose surface temperature is suddenly raised from T =0 (the
temperature of the ambient fluid) to T= T,. Here we have,

ar  O'T

& oy
This sort of diffusion equation can be solved by looking for self-similar
solutions of the type T = T,f(y/d), = (2at)'’*. That is, heat diffuses
out of the plate and the thickness of the heated region grows with
"2 The quantity § is called the diffusion
length and it turns out that fis an error function, but the details are

T=T, at y=0.

time according to ¢ ~ (20t)

unimportant. Our experience with the thermal problem suggests
that we look for a solution of our vorticity equation of the form,
® = (V/fy!d), 6 = (2vt)"’*. Substituting this guess into (2.32) yields,
after a little algebra,

o = (2/n)*(V/5) exp| 7/ (411)].

Thus vorticity is created at the surface of the plate by the shear stress
acting on that surface. This vorticity then diffuses into the fluid in
exactly the same way that heat diffuses away from a heated surface. It
diffuses a distance 6 ~ (2v£)"’? in a time t.
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Figure 2.12 A boundary layer may be
regarded as a diffusion layer for vorticity.

Figure 2.13

Vortex tube

Stretching of a vortex tube.

Vorticity dynamics

Consider now the laminar boundary layer shown in Figure 2.12.
Here the plate is at rest and the fluid moves over the plate. We know
that the vorticity in the boundary layer is intense, while that outside is
weak. This follows simply from the definition @ =V X u and the fact
that velocity gradients are large in the boundary layer. We interpret
this as follows. Vorticity is generated at the surface of the plate, just
like the previous example. This diffuses out from the plate at a rate
0 ~ (2vt)"’%. Meanwhile, material particles are being swept down-
stream at a speed ~ V. A particle at a distance y from the plate will
first feel the influence of the plate (by gaining some vorticity) after a
time t ~ y*/v, by which time it has moved a distance x ~ Vt from the
leading edge. So we expect the thickness of the diffusion layer to grow
as 0 ~ (vx/ V)%, Of course, this is indeed the thickness of a laminar
boundary layer on a plate.

Thus we see that boundary layers are prolific generators of vorticity
and in fact this is the source of the vorticity in most turbulent flows.
The wind gusting down a street is full of vorticity because boundary
layers are generated on the sides of the buildings. These boundary
layers are full of vorticity and when they separate at the downwind
side of the building this vorticity is swept into the street (Figure 1.12).

Let us now return to three dimensions. Here the analogy to heat is

lost since the governing equation is

Do _ (@ Viu+rVie. (2.35)
Dt

We have a new term, (@-V)u, to contend with. Now we have
already suggested that this represents the intensification (or diminu-
tion) of vorticity through the stretching (compression) of material
elements. This is readily confirmed as follows. Consider a thin tube of
vorticity, as shown in Figure 2.13. Let uy be the component of velocity
parallel to the vortex tube and s be a coordinate measured along the
tube. Then

Now the tube is being stretched if #; at B is greater than that at A; that
is, if duy/ds > 0. Thus (@ - V)uy is positive if the vortex tube is being
stretched and from (2.35) we see that ® will increase in such cases.
This is simply the intensification of vorticity (angular velocity) through
the conservation of angular momentum.

If we let the cross-section of the tube shrink to almost zero we get
something approaching a vortex line. The same argument can then
be repeated for any vortex line in the flow. So, if vortex lines are
stretched, their vorticity is intensified.
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Figure 2.14 Defining sketch for
equation (2.37).
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The process of intensification of vorticity by stretching is often
written in terms of the enstrophy equation. Enstrophy, @?/2, is
governed by the equation

D [w? 5
A EE = 0;0;S; — V(V x 0)" + vV - [0 x (V x @)].

(2.36)

This comes from taking the scalar product of (2.35) with @. The
divergence on the right integrates to zero for a localized distribution of
vorticity and is often unimportant. The other two terms on the right
correspond to the generation (or reduction) of enstrophy via vortex
line stretching (or compression) and the destruction of enstrophy by
viscous forces. Thus we see that enstrophy, just like mechanical
energy, is destroyed by friction. We shall use (2.36) repeatedly in our
discussion of turbulence.

2.3.3 Kelvin’s theorem

No fluid is inviscid. Nevertheless, there are a few (but not many)
circumstances where viscous effects can be neglected. In such cases a
powerful theorem, called Kelvin’s theorem, applies. Its most impor-
tant consequence is that vortex lines, the analogue of streamlines, are
convected by the flow as if frozen into the fluid.

To prove Kelvin's theorem we first need a simple kinematic result.
Suppose S, is a material surface (a surface always composed of the
same fluid particles), G is any solenoidal vector field which lies in
the fluid, and u is the velocity field of the fluid. We wish to determine
the rate of change of the flux of G through §,, as it moves with the
fluid (Figure 2.14).

It turns out that this is given by

d 0G
E/SMG'dS/SM[E—VX(HXG) .ds (2.37)

We will not give a formal proof of (2.37) since this is readily found
elsewhere. However, we note that the idea behind (2.37) is the fol-
lowing. The flux of G through S,, changes for two reasons. First, even
if S,, were fixed in space, there is a change in flux whenever G is time-
dependent. This is the first term on the right of (2.37). Second, since
the boundary of S,, moves with velocity u, it may expand at points to
include additional flux, or perhaps contract at other points to exclude
flux. Suppose that the bounding curve for S,,, say C,, is composed of
line elements dl. Then it happens that, in a time ot, the surface
adjacent to the line element dl increases by an amount dS = (u X dl)ot
and so the increase in flux due to movement of the boundary C,, is

5/ Gvds—j[ Gv(uxdl)ét—j{ (u x G). dldt.
S Cn Cin
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Figure 2.15 A vortex tube.

Vorticity dynamics

The line integral may be converted into a surface integral using
Stokes’ theorem and (2.37) follows.
Now for an inviscid fluid we have,

Jw

at:VX(uxw).

Combining this with (2.37) we see that, for any material surface, S,,,

d

— - dS = 0. 2.38
il (2.38)

To put it more simply, this states that the flux of vorticity through any
material surface remains constant as the surface moves. If C,, is the

bounding curve for S,, this may be rewritten in the form

I'= j{ u - dl = constant. (2.38b)
Cu

This is Kelvin’s theorem. The quantity I is called the circulation. At
first sight Kelvin’s theorem may seem a little abstract but it has
important physical consequences. To illustrate this it is instructive to
apply (2.38b) to an isolated vortex tube: that is, a tube composed of an
aggregate of vortex lines (Figure 2.15). Since ® is solenoidal,

fords—o

and it follows that the flux of vorticity, ® = [ e - dS, is constant along
the length of the vortex tube. From Stokes’ theorem we have

CD—%uwﬂ—F
c

where C is any curve which encircles the tube. It follows that I has
the same value irrespective of the path C, provided, of course, that C
encircles the vortex tube.

Now suppose that C is a material curve, C,,, which moves with the
flow. Moreover, suppose that C,, at some initial instant encircles the
vortex tube as shown in Figure 2.15. From Kelvin's theorem we know
that I" is conserved as the flow evolves. It follows that the flux
through C,, is conserved by the flow and the implication is that C,,
must always encircle the vortex tube. Since C,, moves with the fluid
this suggests, but does not prove, that the tube itself moves with the
fluid, as if frozen into the medium. This, in turn, suggests that every
vortex line in an inviscid fluid moves with the fluid, since we could let
the tube have a vanishingly small cross-section. We have arrived at
one of the central results of vortex dynamics:

Vortex lines are frozen into a perfectly inviscid fluid in the sense

that they move with the fluid.
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Of course, in two-dimensional motion we have already seen this at
work since, when v =0, Dw/Dt =0 in a planar flow.

A formal proof of the ‘frozen-in” property of vortex lines actually
requires a little more work. It normally proceeds along the following
lines. Consider a short line dl drawn in the fluid at some instant and
suppose dl subsequently moves with the fluid, like a dye line. Then
the rate of change of dl is u(x 4 dl) — u(x) where x marks the start of
the line. It follows that

D
Do (d) =u(x+dl) —u(x) = (dl- V)u. (2.39)
Compare this with the inviscid equation for vorticity

o (o V)u (2.40)
Evidently, @ and dl obey the same equation. Now suppose that, at
t=0, we draw dl so that @ = Adl for some A. Then from (2.39) and
(2.40) we have DA/Dt=0 at t=0 and so @ = Adl for all subsequent
times. That is to say, @ and dl evolve in identical ways under the
influence of u and so the vortex lines are frozen into the fluid.

So we can reach the ‘frozen-in’ property of vortex lines either
directly or else via Kelvin’s theorem. Of course, it does not matter
which route we take, it is the result itself which is important. It is
a crucial result because it allows us to visualize the evolution of a
high-Re flow. We simply need to track the movement of the vortex
lines as the flow evolves. Equation (2.28) then gives u at each instant.

2.3.4  Tracking vorticity distributions

Much of nineteenth-century fluid mechanics focused on so-called
potential flow theory. This is exemplified by Figure 2.16(a) which
shows an aerofoil moving through still air. There is a boundary layer,
which is filled with vorticity, and an external flow. In a frame of
reference moving with the aerofoil the flow well upstream of the wing
is uniform and hence free of vorticity. Since the vorticity generated on
the surface of the foil is confined to the boundary layer (and sub-
sequent wake), almost the entire external flow is irrotational. The
problem of computing the external motion is now reduced to solving
the two kinematic equations: V:-u=0 and V xu=0. This is
potential flow theory and it is really a branch of kinematics rather than
dynamics. However, potential flows are extremely rare in nature,
being largely confined to external flow over a streamlined body (in
which upstream conditions are irrotational) and to certain types of
water waves. In practice, virtually all real flows are laden with vor-
ticity. This vorticity is generated in boundary layers and then released



Figure 2.16 (a) Potential flow theory
typified classical aerodynamics. (b) Virtually
all real flows are laden with vorticity.

Vorticity dynamics

Potential flow u(y) Boundary layer

N
The turbulent wake is In a turbine the vorticity In confined flows the
full of vorticity created by one blade spills  vorticity created at the
out onto the next blade boundaries slowly seeps

into the entire flow,
eventually dominating
the flow

into the bulk flow as a result of boundary layer separation (as in the
case of flow over a cylinder) or else in the form of a turbulent wake.
Some simple examples are shown in Figure 2.16(b). Note that internal
flows are never potential flows. (You can prove this using Stokes’
theorem.)

So there are two types of flow: potential flow and vortical flow. The
former is easy to compute but infrequent in nature, while the latter is
commonplace but more difficult to quantify. The art of understanding
vortical flows is to track the vorticity as it spills out from the boundary
layer into the bulk flow.

Let us now summarize what we know about tracking the vorticity
distribution in an evolving flow field. When Re is large the vortex lines
are frozen into the fluid. Thus, for example, two interlinked vortex
tubes in an inviscid fluid preserve their relative topology, remaining
interlinked for all time (Figure 2.17).

However, we also know that vorticity can diffuse when Re is finite.
Thus, in practice, the two vortex tubes shown in Figure 2.17 will
sooner or later change their relative topology as excessive straining at
one or more points induces significant diffusion which, in turn, causes
the tubes to sever and reconnect.

The main point, however, is that we can track the vorticity from
one moment to the next. It can spread by material movement or else
by diffusion. In either case this is a localized process. This is not the
case with linear momentum, u. As discussed in Section 2.2 of this
chapter, a localized distribution of momentum can be instantaneously
redistributed throughout all space by the pressure force, —Vp. Thus
we can talk about compact regions of vorticity evolving in space and
time, while it makes no sense to talk of a compact region of u. So
when we allude to turbulent eddies of a finite size evolving in some
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Figure 2.17 Two interlinked vortex lines
in an inviscid fluid preserve their topology
as they are swept around by the flow.

52

Tube 2

Tube 1 /

coherent fashion, we really mean blobs of vorticity (and their asso-
ciated motion) evolving in a flow field.

Of course, we cannot divorce the velocity field from the vorticity
since @ =V X u. In a sense, the vorticity field advects itself. Consider
the two interlinked vortex tubes shown in Figure 2.17. At any instance
each induces a velocity field in accordance with the Biot-Savart law
(2.28). This velocity field then advects the tubes as if they were frozen
into the fluid. A short time later we have a new vorticity distribution
and hence, from (2.28), a new velocity field. We then advect the
vortex tubes a little more, based on the new velocity field. This
gives yet another vorticity distribution and, by inference, yet another
velocity field. In this type of flow the art of tracking the motion is one
of tracking the development of the vorticity field.

Of course, in general not all of the velocity field need originate from
the vorticity. We can add any potential flow, u= V¢, to (2.28) and
not change the vorticity distribution. For example, the tornado shown
in Figure 2.7 might sit in an irrotational cross-wind. There are then
two sources of motion: the cross-wind and the swirl associated
with the vortex tube (tornado). Formally, we may decompose any
incompressible flow into two components. One arises from the vor-
ticity and is defined by V -u, =0, V X u, = m, or else by the Biot—
Savart law (2.28). The other is a potential flow, w,= V¢, V¢ =0.
The total velocity field is the sum of the two: u=u,, +u,. Such a
decomposition is known as a Helmholtz decomposition.

2.4 A definition of turbulence

When you are a Bear of Very Little Brain, and you Think of Things, you find
sometimes that a Thing which seemed very Thingish inside you is quite
different when it gets out into the open and has others looking at it.

(A.A. Milne, House at Pooh Corner)

There has been a longstanding tradition in turbulence of studiously
avoiding any formal definition of what we mean by a ‘turbulent eddy’,
or for that matter ‘turbulence’. It is almost as if we fear that, as soon as
we try to define an eddy, the entire concept will melt away, proving



Figure 2.18 We may think of turbulence as a
tangle of interacting vortex tubes.

A definition of turbulence

to be entirely illusory, just like Pooh Bear’s “Thing’. Well, we have
already stated what we interpret an eddy to be (i.e. a blob of vorticity
and its associated velocity field) and so perhaps we should now take a
stab at a definition of turbulence.

The idea that a turbulent eddy is a blob of vorticity gives us a means
of picturing the evolution of a field of turbulence. The turbulence
comprises of a sea of eddies (lumps of vorticity). These vortices are
stretched and twisted by the velocity field, which is itself dictated by
the instantaneous vorticity distribution through (2.28). Thus the vor-
tices evolve and interact via their induced velocity field, with diffusion
being restricted to regions where large gradients in vorticity develop.
So we might picture turbulence as a seething tangle of vortex
tubes, evolving under the influence of their self-induced velocity field
(Figure 2.18). This suggests that, following the suggestion of Corrsin
(1961), we might define turbulence as follows:

Incompressible hydrodynamic turbulence is a spatially complex distribu-
tion of vorticity which advects itself in a chaotic manner in accordance
with (2.31). The vorticity field is random in both space and time, and
exhibits a wide and continuous distribution of length and time scales.

Note that (unlike Corrsin) we use the term chaotic, rather than
random, to describe the self-advection of a turbulent vorticity field.
We do so because we wish to emphasize that turbulence is extremely
sensitive to its initial conditions and it is for this reason that no two
realizations of a turbulent experiment are ever exactly the same. This
extreme sensitivity to initial conditions is the hallmark of mathema-
tical chaos. Note, however, that chaotic advection does not, in itself,
guarantee turbulence. A small number of point vortices (four or more)
can advect themselves in a chaotic manner in the x—y plane, yet this is
not turbulence. Such a vorticity distribution is excluded from our
definition because it is neither spatially complex nor does it exhibit a
wide range of length scales. Note also that chaotic particle paths are

53



The equations of fluid mechanics

54

not necessarily a sign of turbulence.” Simple, non-random Eulerian
velocity fields (laminar flows) can cause fluid particles to follow
complex trajectories which have certain chaotic properties. Such flows
are also excluded from our definition as we require the vorticity field
itself to be chaotic, not just the particle trajectories.

This concludes our brief introduction to fluid mechanics. We now
return to the difficult task of quantifying turbulence. However, the
key message you should carry away from this chapter is the following.
Whenever we refer to a ‘turbulent eddy’, we really mean a blob, tube,
or sheet of vorticity and the associated flow. Such a blob (eddy)
evolves in the velocity field induced by itself and by all the other
vortical structures. It remains coherent (localized) for a certain time
because vorticity can spread only by material movement or else by
diffusion. This is not true of linear momentum, u, since the pressure
force can instantaneously redistribute linear momentum throughout
all space. In short, a turbulent flow is a complex tangle of vortex tubes,
sheets, and blobs evolving in accordance with (2.30).

The other thing worth remembering is that blobs or sheets of
vorticity are usually unstable and soon develop into spatially complex
structures. In this sense the smoke ring and tornado shown in
Figure 2.7 are atypical. Consider Figure 1.7: as the turbulent smoke
rises it twists and turns forming highly convoluted shapes. If you
imagine that the smoke marks the vorticity field you have a useful
cartoon for turbulent flow.

Exercises

2.1 Flow down a cylindrical pipe has a component of swirl. The velocity
field is given in (r, 8, z) coordinates by (0, ug(r), u,(r)). Calculate the vorticity
and sketch the vortex lines and tubes.

2.2 Consider an axisymmetric flow consisting of swirl, (0, 1y, 0), and poloidal
motion, (4,0,4,). Show that the instantaneous velocity field is completely
determined by the angular momentum, I = rug, and the azimuthal vorticity,
®y. Now show that,

DI’ o D(wg/r) 0 [I?
Dt Dt Oz |
Explain the origin of the source term in the evolution equation for w.

2.3 A thin plate is aligned with a uniform flow #, and a laminar boundary
layer develops on the plate. The thickness of the boundary layer is of the order
of &~ (vx/uy)"'? and the velocity profile may be approximated by the self
similar form u/u,=sin(my/20). (The coordinate x is measured in the

? See, for example, Ottino (1989).



Suggested reading

streamwise direction from the leading edge of the plate.) Calculate the vor-
ticity distribution and sketch it.

2.4 A vortex ring, for example, a smoke ring, is often modelled as a thin,
circular vortex tube. Sketch the velocity distribution associated with a vortex
ring. [Hint: recall that there is an exact analogy between u and w on the one
hand and electrical currents and magnetic fields on the other. The electrical
current plays the role of vorticity and the magnetic field plays the role of
velocity.] Explain how the vortex ring propagates through a quiescent fluid.
An unusual vortex motion may be observed in rowing. At the places where
the oar breaks the surface of the water just previous to being lifted, a pair of
small dimples (depressions) appear on the surface. Once the oar is lifted from
the water this pair of dimples propagate along the surface. They are the end
points of a vortex arc (half a vortex ring). Explain what is happening. Try this
experiment using the blade of a knife or a spoon in place of the oar.

2.5 Potential flows are governed by the two kinematic equations V-u=20
and V X u=0. Where does dynamics enter such flows?

2.6 Estimate the rate of spreading of the two-dimensional blobs of heat
shown in Figure 2.9. Now do the same calculation for the vortices in a Karman
street at the rear of a cylinder.

2.7 The helicity of a region of inviscid fluid is defined as

H—/u~de.
v

Show that, if the vortex lines are closed in V, then H is an invariant of the
motion. [Hint: first obtain an expression for the rate of change of u- w, i.e,,
D(u-®)/Dt=u-(Dw/Dt)+ o - (Du/Dt).]

2.8 Consider a region of fluid in which sit two interlinked, thin vortex tubes.
Evaluate the net helicity for this region and show that, if the tubes are linked
just once, as in Figure 2.17, then

H = j:q)lq)z

where @, and @, are the fluxes of vorticity in each tube. Show that, for this
simple configuration, the conservation of H in an inviscid flow is a direct
consequence of the frozen-in" behaviour of vortex lines.

Suggested reading

Acheson, D.J. (1990) Elementary Fluid Dynamics. Clarendon Press. (Consult
chapter 5 for a nice overview of vortex dynamics.)

Batchelor, G.K. (1967) An Introduction to Fluid Dynamics. Cambridge University
Press. (Chapter 3 introduces the Navier-Stokes equation and chapters 5 and
7 give a comprehensive overview of vortex dynamics.)

Ottino, J.M. (1989) The Kinematics of Mixing. Cambridge University Press. (This
book describes how chaotic particle trajectories can appear in relatively
simple flows.)
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CHAPTER 3

The origins and nature of
turbulence

The next great era of awakening of human intellect may well
produce a method of understanding the qualitative content of
equations. Today we cannot. Today we cannot see that the
water flow equations contain such things as the barber pole
structure of turbulence that one sees between rotating cylinders.
Today we cannot see whether Schrédinger’s equation contains
frogs, musical composers, or morality—or whether it does not.
We cannot say whether something beyond it like God is needed,
or not. And so we can all hold strong opinions either way.

R.P. Feynman (1964)

It is an understatement to say that there is much we do not under-
stand about turbulence. So, as with religion, we can all hold strong
opinions! Of course the ultimate arbiter in such situations is the
experimental evidence, and so experiments play a special role in tur-
bulence theory.' They teach the theoretician to be humble and point
the way to refining and clarifying our ideas. In this chapter we discuss
one particular type of experiment at length: that is, grid turbulence in
a wind tunnel. In many ways this is the archetypal example of tur-
bulence and it has been extensively studied. It therefore provides a
convenient vehicle for airing such issues as: ‘does turbulence
remember its initial conditions?’ and ‘is turbulence deterministic in a
statistical sense?’.

We start, however, by revisiting the ideas of transition to turbu-
lence and of chaos in a fluid. We have seen that, for all but the
smallest of velocities, solutions of Navier-Stokes equations are usually
chaotic. This is quite different from the behaviour of other, more
familiar, partial differential equations, such as the diffusion equation or
wave equation. Studying solutions of the diffusion equation is about as
exciting and unpredictable as watching paint dry, and it is as well for
devotees of Bach and Mozart that solutions of the wave equation are

! The dangers of the theoretician ignoring the experimental evidence is nicely
summed up by Bertrand Russell who observed that “Aristotle maintained that women
had fewer teeth than men: although he was twice married, it never occurred to him to
verify this statement by examining his wives” mouths.”
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well behaved. It would seem, therefore, that there is something special
about the Navier-Stokes equation and we claimed in Chapter 1 that it
is the non-linear term, (u- V)u, which lies at the root of fluid chaos.
The link between non-linearity, chaos and turbulence is our first topic
of study.

3.1 'The nature of chaos

Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?
(E. Lorenz)

Our discussion of chaos is brief and limited to three main themes. First
we wish to show that even a very simple evolution equation can lead
to chaotic behaviour. We take as our example the much studied and
rather elegant logistic equation. This equation contains both linear and
non-linear terms. We shall see that the chaotic behaviour of solutions
of the logistic equation is a direct result of non-linearity. When the
non-linear term is relatively weak the solutions are well behaved.
However, as the relative magnitude of the non-linear term is increased
the solutions become increasingly complex, passing through a
sequence of bifurcations (sudden changes), each bifurcation leading to
a more complex state. Eventually the solutions become so intricate
and complex that they are, to all intents and purposes, unpredictable.
In short, the solutions are chaotic.

Our second theme is the idea that this ‘transition to chaos’ is not
particular to the logistic equation. Rather, it is a general property of
many non-linear systems. This leads us to Landau’s theory of the
transition to turbulence. Here a laminar flow is predicted to pass
through a sequence of bifurcations, leading to increasingly complex
states as Re is increased. In particular, Landau envisaged an infinite
sequence of bifurcations, in which the jump in Re, [ARe],, required to
move from the nth bifurcation to the next becomes progressively
smaller as n increases. In this way an infinite number of bifurcations
(to ever more complex states) can occur as Re — 00, or possibly even
within a finite range of Re. This picture of the transition to turbulence
is now thought to be too simplistic. However, it does at least capture
the spirit of the emergence of turbulence in certain geometries.

Our third and final topic has more of a thermodynamic flavour
and harks back to an old dilemma in classical statistical mechanics.
The issue relates to the so-called arrow of time. We have suggested
that the chaotic mixing induced by a turbulent flow is due to the
non-linearity of the Navier-Stokes equation. If this is true we might
expect solutions of the invicid equation of motion (the Euler equation)
to exhibit the same property, that is, that of continually mixing any
‘frozen in’ marker, such as die or vorticity. However, the Euler
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equation is time reversible, and so a computer simulation of an Euler
flow played backwards would also be evolving according to the
Euler equation. We might, for example, imagine a computer simu-
lation of a two-dimensional Euler flow in which we start with all of
the fluid on the left marked red and that on the right marked blue. As
the simulation proceeds the colours begin to mix. After a while we
stop the simulation and then play it backwards, like a movie played
in reverse. This time the colours separate as the fluid returns to its
original state. But this ‘reverse flow’ is also governed by the Euler
equation. Thus the (alleged) tendency of a Euler flow to create ever
greater mixing seems inconsistent with the underlying structure of
the Euler equation. So how can an evolution equation which
apparently does not distinguish between increasing or decreasing
time lead, in practice, to a unidirectional increase in mixing? This is
our third topic of discussion.

The literature on chaos theory, and its relationship to fluid turbu-
lence, is vast. We can barely scratch the surface of the subject here.
However, interested readers will find a more detailed discussion of
many of these issues in Drazin (1992). Let us start, then, with the link
between non-linearity and chaos.

3.1.1  From non-linearity to chaos

We discussed transition to turbulence in Chapter 1. For example, we
noted that, in the experiments of Taylor and Bénard, the flow appears
to pass through a number of states of increasing complexity as v is
decreased. Let us use the symbol R to represent the appropriate
dimensionless control parameter in these types of experiments. In
Taylor’s experiments we might take R=(Ta), while in Reynolds’
experiment, or flow over a cylinder, we have R=Re. In either case
R~v~ ' In the Taylor or Bénard experiment it seems that the base
configuration becomes unstable and bifurcates (changes) to a relatively
simple flow at a certain critical value of R. This new flow itself
becomes unstable at a slightly higher value of R and a more complex
motion is established. In general, it seems that as R is increased we
pass through a sequence of flows of ever increasing complexity until a
fully turbulent regime is established. In Chapter 1 we emphasized that
this transition to chaos is the result of the non-linearity of the Navier—
Stokes equation.

Of course, chaotic behaviour is not unique to fluid mechanics.
Chaos is seen in many, much simpler, mechanical, biological, and
chemical systems. It is necessary only that the system is non-linear.
Perhaps the simplest example of a non-linear equation which leads to
chaos is the logistic equation, and we now digress for a moment to
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Figure 3.1 (a) Iterates of the logistic
equation. Only the first bifurcation is shown.
Stable fixed points and two-cycles are denoted
by a continuous curve and unstable fixed
points and two-cycles by a dotted curve.

(b) Iterates of the logistic equation. Only the
first two bifurcations are shown.
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discuss its behaviour. The simple algebraic formula

Xur1 = F(x,) = ax,(1—x,); 1<a<4 (3.1)

was introduced in 1845 by Verhulst to model the growth of the
population of a biological species. Here x, (the normalized population
of the nth generation) may take any value from 0 to 1. Note that
difference equations of this type have many similarities to ordinary
differential equations (ODEs) of the form x = G(x). Indeed, the
numerical solution of x = G(x) by finite differences leads to a differ-
ence equation of the form x,,,=F(,), with the integer n now
playing the role of time. The analogue of a steady solution of an ODE
is a solution of the form X = F(X), that is, X,, , ; = X,. Such solutions
are called fixed points of the difference equation. In the case of the
logistic equation (3.1) the fixed points are X=0 and X = (a — 1)/a.

Now, just as a steady solution of an ODE can be unstable, so fixed
points may be unstable. We say a fixed point is linearly unstable if
xo=X — Ox leads to a sequence x,, xy, . . ., x, which diverges from X
for an infinitesimal perturbation Jx. It is readily confirmed that the
null point, X =0, is unstable for all @ > 1, while X =(a — 1)/a is line-
arly stable for 1 <a <3 but unstable for a >3 (see Exercise 3.2).

For a > 3 something interesting happens. Just as we lose stability of
the fixed point X=(a — 1)/a, a new, periodic solution appears. This
has the form X, = F(X,) and X, = F(X,) so the variable x,, flips back and
forth between X; and X,. It is left as an exercise for the reader to
confirm that (see Exercise 3.1),

X, X, =[a+ 14 ((@a+1)(a—3))"/2a

Such a periodic solution is called a two-cycle of F and we talk of the
fixed-point solution bifurcating to a two-cycle through a flip bifurcation.
It turns out that the two-cycle is linearly stable for 3 < a <1+ /6.
The flip bifurcation is shown in Figure 3.1(a).

Of course, linear (small perturbation) theory tells us nothing about
the fate of iterates starting from arbitrary values of x,. Nevertheless, it
can be shown that for x, in the range 0 <x, <1 the iterates converge
to the fixed point X = (a — 1)/a, provided that 1 <a <3, and to the
two-cycle if 3 <a <1+ /6. We talk of the fixed point having a
domain of attraction of x,=0—1 for 1<a<3 and the two-
cycle having a similar domain of attraction for 3 <a <1+ +/6
(Figure 3.1(a)).

This is the situation for a < 1+ /6 = 3.449. At a = 3.449 there is
another bifurcation to a more complicated periodic state, called a four-
cycle, in which x, flips around between four branches of the ‘solution
curve’. (This type of transition is called period doubling.) Yet another
bifurcation occurs at a = 3.544 to an even more complicated periodic
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solution (an eight-cycle). In fact, it turns out that there is an infinite
sequence of period doubling bifurcations to ever more complex states
and that these all occur for 3 <a < 3.5700.”> So what happens for
values of a larger than this? Well, for a > 3.5700 the solutions become
aperiodic and the sequence x, becomes chaotic in the sense that it may
be regarded as a sample of a random variable (Figure 3.1(b)).

Although chaos is the rule for a >3.5700 there are islands of tran-
quillity within the sea of chaos. In particular, for 3.5700 < a < 4 there
are narrow windows (small intervals of @) in which we recover peri-
odic behaviour. Actually, there is an infinity of such windows,
although most of them are extremely narrow.

Some hint as to the behaviour of the logistic equation for a > 3.5700
may be obtained by considering the special case of a=4 (von
Neumann 1951). Rather remarkably this has an exact solution.
Consider x, = sin*(nf,) where 8, is restricted to the range 0< 6, <1
and 0, , , is defined as the fractional part of 20,. Then we have

Xpy = sin®(nb,4,) = sin*(276,) = 4 sin®(%b,,) cos*(nb,,)
which is a solution of
Xug1 = 42, (1 — x,)

as required. Thus the solution for a = 4 is simply x, = sin’(2"%6,). To
study the properties of this solution we note that, since 0 < 0, < 1, we
can write 8, as a binary number,

60:b1/2+b2/22+b3/23+"‘

where b;=0 or 1. (This kind of expansion is possible since
1/24+1/441/8 4 --- =1 and so, setting certain of the b;’s to zero
gives a number between 0 and 1.) Evidently,

81 :b2/2+b3/22+b4/23+
82 :b3/2+b4/22+bs/23+'“
83 :b4/2+b5/22+b6/23+

This property of 0, is known as the Bernoulli shift and it can be used
to show that, if 8, is irrational, then the sequence 8, is aperiodic. If 6,
is rational, on the other hand, the sequence 0, is periodic, that is,

0, 4 =10, for some p, or else terminates at f = 0 after a finite number

of steps. For example, 6, = 1 leads to a two cycle 1,2, 2, ... while

? This infinite sequence of period doubling bifurcations is not restricted to solutions
of the logistic equation. Precisely the same behaviour is seen in many other non-linear
systems, and is known as a Feigenbaum sequence. It is remarkable that an infinite
sequence of bifurcations occur within a finite range of the control parameter.
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6, :% leads to i, %,O, 0, .... Of course, all periodic sequences are
unstable because, for any given rational value of 8, we can find an
irrational value of 0,, which is arbitrarily close to it. Thus a periodic
solution can be changed into an aperiodic one through an infinitesimal
change in the initial conditions. (These unstable p-cycles are the
continuation of the stable p-cycles which arise for 3 <a <4.) More-
over, it may be shown that, if we let n get large enough, each aper-
iodic sequence 0, eventually gets arbitrarily close to any given point in
the range 0— 1. Since any numerical experiment is subject to
rounding error, and any physical experiment to imperfections, it is the
more common aperiodic solutions, and not the unstable periodic ones,
which are more important in practice.

Now consider two infinite sequences 6, and 8, which are generated
from irrational initial conditions. Let }, =6, — 6?:1 be the difference
between the sequences and suppose that 7, = & where & is small. Then
it may be shown that, in general, y, grows exponentially with n. In
short, two initially close sequences diverge exponentially fast. This
extreme sensitivity to initial conditions is the hallmark of chaos, and it
is not restricted to the case a =4 or indeed to the logistic equation.?

Now we have seen that, if left for long enough, 8, and hence x,
visits (or gets close to) every point in the range 0 — 1. In fact, it may
be shown that, provided 0, is irrational, 0, may be regarded as the
sample of a random variable which visits all points in the range with
equal likelihood. From this we conclude that x,, itself may be regarded
as a sample of a random variable. Moreover, its probability density
function (p.d.f.) can be shown to be

Flx) = [mx(1 —x)] 2

(A p.d.f. like fix) is defined by the fact that the relative likelihood of
finding x in the range x — x + dx is f{x)dx.) Thus x,, is, on average, more
likely to be found near the edges of range 0 — 1 than in the middle.

In summary then, when a = 4, the sequence x,, is, in principle, fixed
by the simple deterministic equation

X1 = 4% (1 — %),

In practice, however, x, appears to jump around in a chaotic fashion as
if the sequence x, were a sample of a random variable. This type of

? Typically, in non-linear difference equations a small perturbation in x, of size &
ensures that the trajectories of the original and the perturbed solutions diverge at a rate &
exp(An) where the constant A is called the Liapounov exponent. In the case of the logistic
equation (for a = 4) this sensitivity may be illustrated by considering the binary expansion
for 0,, 8, etc. given above. Suppose that we perturb 6, by changing the coefficient b,,
from 1 to 0, or vise versa. In general this represents only a minute change to ¢,. However,
after only 10 iterations this small change to 6, has become a first-order change to 0.
In general, two irrational initial conditions 6, and 0, + ¢ diverge at a rate £.2".
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chaos is therefore called deterministic chaos. Moreover, the sequence x,,
is extremely sensitive to initial conditions in that two arbitrarily close
initial states will lead to exponentially diverging sequences. Thus we
cannot, in practice, accurately track a given sequence for very long
since a minute amount of rounding error eventually swamps the
attempted calculation. The statistical properties of x,, on the other
hand, appear to be rather simple.

So the simple logistic equation embodies such complex phenomena
as bifurcations, period doubling, the Feigenbaum sequence, and
deterministic chaos. All of this from such a benign looking equation
and all of this because it is non-linear! Since such a simple difference
equation gives rise to so rich a behaviour it is little wonder that the
Navier-Stokes equation embodies such diverse phenomena as torna-
does and turbulence.

One of the qualitative features of the chaotic regime in Figure 3.1(b),
which ties in with our experience of turbulence, is the extreme sen-
sitivity to initial conditions. Infinitesimal changes in x, lead to very
diverse trajectories for x, and this is also true of turbulence
(Figure 1.8). There are other qualitative similarities, such as the con-
trast between the complexity of individual trajectories and the sim-
plicity of the statistical behaviour of the system. Finally we recall that,
in the experiments of Taylor and Bénard the flow passes through a
sequence of ever more complex states as v is increased, until
eventually chaos is reached. Moreover, period doubling is sometimes
observed in such a transition. This is all rather reminiscent of the
logistic equation. So can we make the leap from population growth to
the transition to turbulence? We shall pursue this idea a little further in

the next section.

3.1.2  More on bifurcations

Although the turbulent motion has been extensively discussed in literature
from different points of view, the very essence of this phenomenon is still
lacking sufficient clearness. T'o the author’s opinion, the problem may
appear in a new light if the process of initiation of turbulence is examined
thoroughly. (Landau 1944)

The idea that bifurcation theory might be relevant to hydrodynamic
stability was probably first suggested by Hopf in 1942. However,
perhaps it was Landau who (in 1944) initiated the debate on the role of
bifurcations in the early stages of transition to turbulence. We start
with Landau’s theory.

Suppose that R, is the critical value of our control parameter R at
which infinitesimal disturbances first grow in a hydrodynamic
experiment. For example, R. might correspond to the critical value of
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(Ta)"’? at which Taylor cells first appear. Let A(t) and ¢ be the
amplitude and growth rate of the unstable normal mode which sets in
at R=R_. According to linear (small perturbation) theory

A(t) = A, expl(g + jw)t].

Now let us keep R—R. small so that all other normal modes
are stable. We have ¢ < 0 where R <R, and ¢ > 0 for R > R.. Usually
one finds

cd=cR—R)+0[(R—R))], |R—R|<R, (3.2)

for some constant, c. Now as the unstable mode grows it soon
becomes large enough to distort the mean flow. A small perturbation
analysis is then no longer valid and Landau suggested that the mag-
nitude of A (averaged over many cycles) is governed by

dlAf*
dt

— 20]AP—ol]' — BlA]* +--- (5.3)

Provided |A| is not too large we can neglect the higher-order terms
and we arrive at the Landau equation:
2
dlal _ 20|A|"—alAl". (3.4)
dt

The coefficient o is called Landau’s constant and Landau suggested that
o >0 for external flows while & <0 for pipe flow. When o =0 we
recover the linear result and so o|A|* represents the non-linear self-
interactions of the disturbance which can either accentuate or mod-
erate the growth rate. Interestingly, there is some resemblance
between equation (3.4) and the logistic equation.

The nice thing about Landau’s equation is that it has an exact

solution:
A* o 1o A (5.5)
A2 1+ At — 1)’ 20 '

The form of this solution depends on the sign of o. Consider first the
case of o> 0. Then we find that, as t — 00, |A|— 0 when R <R, and
|A|— (26 /0)""* = A, for R>R.. This is called a supercritical bifurcation
and it is illustrated in Figure 3.2(a). Note that, since, 6 ~ (R —R,), we
have Ao, ~ (R — Rc)l/z. Thus, even though the flow is linearly unstable
for R>R,, it soon settles down to a new laminar motion and the
difference between the original flow and the new flow grows with R
according to (R —RY"?% This behaviour is reminiscent of the emer-
gence of Taylor cells between rotating, concentric cylinders.

When o <0 the situation is quite different (Figure 3.2(b)). For
R > R, the disturbance grows very rapidly and |A| — oo within a finite



Figure 3.2 Bifurcations and their mechanical
analogues. (a) Supercritical bifurcation.
(b) Subcritical.
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time, t* = (26) " In[1+ |A|7']. Of course, long before t reaches t* the
Landau equation would cease to be valid and higher-order terms need
to be considered, such as —fB|A|°. These higher-order effects can lead
to a restabilization of the disturbance at larger amplitude, as indicated
by the solid line in Figure 3.2(b). For R < R, we have |A|— 0 ast— o0
provided that 4, < 20/ oc)l/ % that is, the inidal disturbance is small.
However, if the system is given a big enough push, 4,> (2d/®)"?,
|A|— oo within a finite time. (Of course, long before this occurs the
higher-order terms cut in, moderating the growth.) This is called a
subcritical bifurcation (Figure 3.2(b)). In summary, then, when o < 0 the
regime R > R, is both linearly and non-linearly unstable, while R < R,
is linearly stable but non-linearly unstable if the initial disturbance is
large enough. This sort of behaviour is reminiscent of the transition to
turbulence in a pipe.

Landau went on to speculate as to what happens when R —R.
ceases to be small. For the case of a supercritical bifurcation he sug-
gested that, as R — R, increases, the flow resulting from the first
bifurcation will itself become unstable and yet another, more complex,
flow will emerge. He envisaged that, as R rises, more and more
complex (but still laminar) flows will appear through a succession of
bifurcations. He also suggested that the difference in the value of
R between successive bifurcations will decrease rapidly so very soon
the flow becomes complex and confused. The implication is that

65



The origins and nature of turbulence

66

turbulence is the result of an infinite sequence of bifurcations. The
idea is an appealing one, particularly in view of the behaviour of the
logistic equation and it is remarkable that Landau suggested this some
30 years before the development of chaos theory. However, we shall
see shortly that this is too simplistic a view of transition to turbulence.

Two years before Landau’s conjectures Hopf had investigated the
bifurcation of ordinary differential equations. What is now called a Hopf
bifurcation is, in a sense, a subset of Landau’s supercritical bifurcation.
The main feature of such a bifurcation is that the state to which the
system bifurcates is oscillatory, rather than steady. For example, one
might anticipate that the sudden appearance of unsteady Taylor vortices
at a certain value of Ta represents a Hopf bifurcation. The periodic state
which emerges from a Hopf bifurcation is called a limit cycle.

Landau’s 1944 paper is remarkable in the sense that it marked the
first (pre-emptive) step in answering Feynman’s call for a means of
developing a qualitative understanding of the influence of non-
linearity. However, it turns out that Landau’s picture is a little sim-
plistic and that life is much more complicated. For example, while
Landau foresaw the emergence of increasingly random behaviour
through a sequence of bifurcations, as exhibited by the logistic equa-
tion for 3 <a<3.57, he did not foresee the sudden transition to
chaotic behaviour which occurs at a =3.57. Rather, he pictured tur-
bulence as the superposition of a very large number of ‘modes’ of
varying frequencies and random phases, each new frequency being
introduced though a bifurcation. Moreover, the infinite sequence of
bifurcations exhibited by the logistic equation turns out to be only one
of many routes to chaos. In fact, it now seems likely that there are
several routes to chaos and to turbulence. One scenario is that three or
four Hopf-like bifurcations lead directly to chaotic motion which, if
analysed using the Fourier transform, exhibits a continuous spectrum
of frequencies. Another route involves intermittent bursts of chaos in
an otherwise ordered state.

3.1.3 The arrow of time

If someone points out to you that your pet theory of the universe is in
disagreement with Maxwell’s equations—then so much for Maxwell’s
equations. If it is found to be contradicted by observation—well, these
experimentalists do bungle things sometimes. But if your theory is found to be
against the second law of thermodynamics I can give you no hope; there is
nothing for it but to collapse in deepest humiliation. (Eddington 1928)

We have pointed the finger at the inertial term, (u-V)u, as the
source of chaos in the Navier-Stokes equation. It is this chaos, induced
by non-linearity, which gives turbulence its ability to mix rapidly any
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contaminant, say dye. It is obvious, you might say, that if we drop
some red dye into a turbulent stream, it will progressively mix. First it
will be teased out into a tangle of spaghetti like streaks by the eddying
motion, and then, when the streaks are thin enough for diffusion to be
effective, the mass of red spaghetti will dissolve into a pink cloud. This
turbulent mixing arises from chaotic advection, and this chaos, we
claim, comes from non-linearity. Certainly, it is difficult to conceive of
a situation where we start out with a tangled mess of dye strands and
the turbulence acts spontaneously to ‘unmix’ the dye, concentrating it
into a small blob. It seems as if chaotic advection, induced by non-
linearity, gives turbulence an ‘arrow of time’.

There is, however, a problem with this argument. Since non-
linearity is responsible for chaos we might expect a turbulent flow
governed by the Euler equation

X o Vu = Vi)

to exhibit the same arrow of time, progressively mixing fluid and any
passive contaminant which marks it. Suppose, therefore, that we
conduct a thought experiment. We take an extremely accurate
computer and provide it with a computer code capable of integrating
the Euler equation forward in time. We give it an initial condition of
a turbulent velocity field confined to a box, and start the computa-
tion. In order to picture the mixing induced by the turbulence we tag
all the fluid particles on the left of the box with a blue marker and all
the fluid to the right with a red marker. The computation starts and,
of course, we see that the two colours begin to mix due to the
chaotic motion. After a while we stop the numerical experiment and
reverse time, so that t becomes —t and u=dx/dt becomes —u. We
now restart the computation, only this time we are moving back-
wards in time. If our computer were infinitely accurate, subject to no
rounding error, then the computation would resemble a film played
backward. The fluid would appear to unmix, progressively moving
back to a state in which the left of the box is all blue and the right all
red. So what is the problem? Let us examine the ‘backward” Euler
equation in which t becomes —t and u becomes —u. It is

X V) Vip/p).

The Euler equation is unchanged under a reversal of time. So now we
do have a problem. When we stopped our calculation and reversed u,
we simply created a new initial condition. As we then marched
backward in time the dye in the fluid separated rather than mixed, yet
we are integrating exactly the same equation as before, which we
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believed had the property of creating greater disorder by progressive
mixing. We are led to the conclusion that chaotic motion in an
inviscid fluid need not lead to mixing. Yet, in practice, turbulence is
always observed to lead to greater disorder!

There are two points we have overlooked which, when taken into
account, help resolve our dilemma. The first is that all fluids have a
finite viscosity and so all of our intuition relates to turbulence in a
viscous fluid. The second is that we must distinguish between the
statistical likelihood and absolute certainty of increased mixing.

Let us tackle the second of these issues first. A similar dilemma
arises in classical statistical mechanics. At a fundamental level the
classical laws of physics remain unchanged under a reversal of time,
just like the Euler equation (which is, after all, just Newton’s second
law). Yet the macroscopic laws thermodynamics possess an arrow of
time: entropy (disorder) increases in an isolated system. The ther-
modynamic analogue of our computer simulation is the following.
Imagine a box filled with two gases, say helium and oxygen. At t—=0
all the helium is to the left and all the oxygen to the right. We then
observe what happens as the gases are allowed to mix. (We burst
the membrane separating the gases.) As time progresses they
become more and more mixed and entropy rises in accord with the
second law of thermodynamics. Now we play God. We suddenly
stop the experiment and reverse t as well as the velocity of every
molecule. The gases will then proceed to separate, returning to their
unmixed state. However, the equations governing the reverse evo-
lution of the gases are identical to the ‘real’ equations which dictated
the natural (forward) evolution. That is, the fundamental equations
of classical physics do not change as t becomes —t. Yet entropy
(disorder) is seen to decrease as we march forward in ‘backward
time’. Have we violated the second law of thermodynamics? The
consensus is that we have not. The second law tells us only about
probabilities. It tells us that, statistically, disorder is extremely likely
to increase. However, we are allowed to conceive of exceptional
initial conditions which will lead to an increase in order, rather than
disorder, and suddenly stopping all the molecules in a cloud of gas
and reversing their velocities provides just such an exceptional initial
condition.

Essentially the same logic applies to our computer simulation of the
Euler equation. By suddenly stopping the computation and reversing
the velocity of every fluid particle, we have created an exceptional
initial condition: an initial condition which leads to the creation of
order, rather than disorder, under the influence of turbulence. In
practice, however, our thought experiment would be difficult to
realize. When we stopped the computer and reversed time, rounding
error would come into play. When we tried to march backward in
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time we would increasingly diverge from the true ‘reverse trajectory’.
It is probable that the initial conditions created by the imperfect
reversal will be of the more usual, rather than exceptional, type and
lead to yet more disorder as we tried to march backwards in time.

This idea that the statistical behaviour of a system can have an arrow
of time, despite the reversibility of its governing equation, is import-
ant in turbulence closure modelling. Even though the Euler equation
is time-reversible, statistical closure models of turbulence should
possess an arrow of time, even in the absence of viscosity. Some of
the early models, such as the so-called quasi-normal scheme, failed to
take this into account and, as we shall see in Chapter 8, this led to
problems.

Let us now return to our original dilemma: the contrast between
the reversibility of the Euler equation and our intuition that turbu-
lence should always leads to greater disorder. There is a second point
to note. All real fluids have a finite viscosity and the Navier-Stokes
equation (on which our intuition is based), unlike the Euler equation,
is not reversible in time. Now it is true that the chaos in a turbulent
flow is driven by the non-linear inertial forces, and that the viscous
forces are very small. However, as we shall see, no matter how small
we make the viscosity, the viscous stresses still play a crucial role,
breaking and reconnecting the vortex lines at the small scales in a
manner which cannot be realized in an ideal fluid.

In summary, then, the fact that the Euler equation is time reversible
is not incompatible with the notion that turbulence leads to increased
mixing and that the primary driving force for this is chaos resulting
from the non-linearity of the equations. On the one hand, we have
seen that time-reversibility of the inviscid equations is not inconsistent
with an irreversible trend to greater disorder in the statistical prop-
erties of these equations. On the other hand, the small but finite
viscosity possessed by all real fluids ensure that the real equations of
motion are ultimately irreversible.

This more or less concludes our survey of mathematical chaos. We
end, however, with a note of warning. Most studies of chaos theory
have focused on model equations with only a few degrees of freedom.
It is still unclear how these models relate to the onset of turbulence,
which involves a near-infinite number of degrees of freedom, and
indeed to turbulence itself. For example, chaos does not necessarily
imply turbulence: a dripping tap can be made to drip chaotically.
Enthusiasts of chaos theory have, in the past, suggested that
the advent of chaos theory has resolved the “problem of turbulence’,
whatever that is. This claim is strongly rejected by most hard
core turbulence researchers. Chaos theory has taught us to be more
comfortable with the idea that a simple non-linear equation (the
Navier—Stokes equation) can lead to chaotic solutions, and it is highly
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Figure 3.3 (a) The generation of grid
turbulence. (b) Different stages of
development for grid turbulence. The
figure is schematic only and greatly
exaggerates the rate of development of
the turbulence in the axial direction.
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suggestive as to potential transition routes to fluid chaos, but so far it
has told us little about fully developed turbulence. The gap between
chaos theory and turbulence is still large, and is likely to remain so for
a considerable period of time.

3.2 Some elementary properties of freely evolving
turbulence

We put our faith in the tendency for dynamical systems with a large number
of degrees of freedom, and with coupling between those degrees of freedom,
to approach a statistical state which is independent (partially, if not wholly) of
the initial conditions. (G.K. Batchelor 1953)

Let us now turn to wind-tunnel turbulence, which is usually generated
by passing a quiescent air stream through a grid or mesh of bars
(Figure 3.3(a)). In some ways this represents turbulence in its simplest,
purest form. That is to say, once the turbulence has been generated,
there is virtually no interaction between the mean flow, which is more
or less uniform, and the turbulence itself. The only function of the
mean flow is to carry the turbulence through the tunnel. Indeed, the
behaviour of grid turbulence is virtually identical to that observed in
large tank of water which has been vigorously stirred and then left to
itself. Such turbulence is called freely evolving turbulence. In a sense it is
atypical since, in more complex flows, such as jets, wakes, and
boundary layers, there is a continual interaction between the mean

flow and the turbulence, with the former supplying energy to the
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latter. We shall tackle this more complex problem in the next chapter.
However, here we restrict ourselves to freely evolving turbulence as
it allows us to probe the structure of turbulence in its simplest
environment.

A great deal of experimental data have been acquired over the
years on the structure of grid turbulence. These data provide a critical
test for any ‘theory of turbulence’. If the theory is at odds with the
data it must be rejected. We shall use grid turbulence as a vehicle for
discussing a number of issues such as the extent to which turbulence
is, or is not, deterministic. We shall also revisit Batchelor’s assertion
that the precise details of the initial conditions are unimportant as far
as the ultimate state of the turbulence is concerned so that, perhaps,
turbulence possesses some universal features. In particular we ask:
‘how much does the turbulence remember? and ‘are some of its
statistical features universal?’. The contents of this section are divided
up as follows:

1. Various stages of development. Here we describe how fully developed
(mature) turbulence evolves from an initial array of vortices. We
emphasize that fully developed turbulence has a wide range of
length scales, from the integral scale, I, to Kolmogorov’'s micro-
scale, . The energy is concentrated in the large eddies (at the
integral scale) while enstrophy, and hence dissipation, is largely
confined to the small eddies of size ~.

2. The rate of destruction of energy in fully developed turbulence. Here we
revisit the idea of the energy cascade, first introduced in Chapter 1,
Section 1.6. We discuss the rate of energy decay and touch on the
paradoxical result that this decay is independent of the value of
v (provided Re is large). It is emphasized that viscosity plays only a
passive role in the energy cascade, mopping up whatever energy is
passed down to the small scales as a consequence of eddy break-up.

3. How much does the turbulence remember? It is often stated that tur-
bulence has a short memory, rapidly forgetting where it has come
from. In this section we explain why this need not be true. A cloud
of turbulence can retain certain information throughout its evo-
lution. For example, it might remember how much linear or
angular momentum it had.

4. The need for a statistical approach and different methods of taking
averages. In Chapter 1 we emphasized that, although u(x,t) is
chaotic and unpredictable, the statistical properties of u are per-
fectly reproducible in any experiment. This suggests that any
theory of turbulence should be a statistical one and the first step in
such a theory is to introduce a method of taking averages. There
are several types of averages employed in turbulence theory and
these are discussed in this section.

71



The origins and nature of turbulence

72

5. Velocity correlations, structure functions, and the energy spectrum. Here
we introduce the various statistical parameters which are used to
characterize the instantaneous state of a field of turbulence. In
particular, we introduce the velocity correlation function which is the
workhorse of turbulence theory. This tells us about the extent to
which the velocity components at any one location are correlated
to those at a second location. The Fourier transform of the velocity
correlation function leads to something called the energy spectrum
which is a particularly useful means of distinguishing between the
energy held in eddies of different sizes.

6. Is the asymptotic state universal? Kolmogorov’s theory. Here we discuss
the question of whether or not mature turbulence possesses certain
universal features. This leads to Kolmogorov’s theory (probably the
most celebrated theory in turbulence) which predicts how kinetic
energy is distributed across the different eddy sizes.

7. The probability distribution of the velocity field. We end with a dis-
cussion of the probability distribution of u(x, t). Here we examine
the extent to which the probability distribution can be treated as
Gaussian, an assumption which underpins certain heuristic models
of turbulence. In fact, we shall see that turbulence is anything but
Gaussian. This has profound ramifications for certain ‘closure
models” of turbulence.

There is a great deal of important information packed into these
seven subsections, much of it empirical but some of it deductive.
Although the discussion is framed in the context of grid turbulence,
many of the concepts are quite general, and so it is well worth mas-
tering these ideas before moving on to the more mathematical
chapters which follow.

3.2.1 Various stages of development

Remember that we defined turbulence as a spatially complex dis-
tribution of vorticity which advects itself in a chaotic manner in
accordance with the vortex evolution equation (2.31). The velocity
field, which is the quantity we measure, plays the role of an auxiliary
field, being determined at any instant by the vorticity distribution in
accordance with the Biot-Savart law. So, if we are to create turbu-
lence, we first need to generate vorticity. In the absence of body forces
this can come only from a solid surface, and in a wind tunnel this is
achieved most readily by using a grid.

Consider the flow shown in Figure 3.3(a). A grid is inserted into the
path of a relatively quiescent stream with the intention of generating a
field of turbulence downstream of the grid. The flow undergoes a
sequence of transitions as indicated in Figure 3.3(b).
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Table 3.1 Notation for this chapter

Total velocity field u=V+u'
Mean flow in wind tunnel A%
Turbulent fluctuations u’

Size of large eddies (integral scale) l

Typical fluctuating velocity of large eddies u
Size of smallest eddies (Kolmogorov scale) n
v

Typical fluctuating velocity of smallest eddies

Initially the motion consists of a discrete set of vortices which are
shed from the bars of the grid (stage (i)). Although the vortices which
peel off the bars may be initially laminar, they rapidly develop tur-
bulent cores and then interact and mingle until some distance
downstream we find a field of fully developed turbulence (stage (ii)). This
is turbulence which contains the full range of scales from the integral
scale (the size of the large eddies) down to the Kolmogorov microscale
(the size of the smallest, most dissipative eddies).” This state is
sometimes referred to as the asymptotic state of the turbulence.

We now have what is known as freely evolving or freely decaying
turbulence. It so happens, for reasons which we shall discuss in
Chapter 6, that the smallest eddies decay fastest in freely decaying
turbulence. Thus, after a while, we find that the turbulence is dom-
inated by large, slowly rotating eddies (stage (iii)). Eventually, the
turbulence becomes so depleted that Re, based on the large eddy size,
approaches unity. We then enter the so-called final period of decay
(stage (iv)). Inertia is now relatively unimportant and we have, in
effect, a spatially complex laminar flow (this last phase is not shown in
Figure 3.3(b)).

Let us suppose that our wind tunnel is large so that we may obtain
a reasonably high value of Re = ul/v, say 10”. (Here [ is a measure of
the large eddies and u is a typical value of the turbulent velocity
fluctuations.) We now insert a velocity probe into the tunnel and
arrange for it to move with the mean flow, V, following a ‘cloud’ of
turbulence as it passes through the test section. The probe records the
velocity at a point in the turbulent cloud from which we calculate
1 (W')*(t). (Here, u’ =u — V, u being the absolute velocity of the fluid,
and u’ the turbulent fluctuations. See Table 3.1.) We now repeat the
experiment many times under nominally identical conditions. Each
time u'(¢) is different because there are always infinitesimal differences
in the way the experiment is carried out and it is in the nature of
turbulence to amplify these differences. (This is reminiscent of the

* The idea of the Kolmogorov scale and the integral scale is introduced in Chapter 1,
Section 1.6. You may wish to consult this before reading this section.
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Figure 3.4 . (t), and hence ()2 (1), is a
highly irregular function of time in any one
realization. However, the ensemble average is
a smooth function of time.
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behaviour of the logistic equation.) To overcome this problem we
average 1 (')’ (t) over the many realizations of the experiment to give
a so-called ensemble average, denoted by 1((u')*)(t). This tells how
rapidly, on average, the fluid loses its kinetic energy as a result of
viscous dissipation as it passes through the test section.

It turns out that, while u’ is apparently random in any one realiza-
tion, the ensemble average, ((u’)®), is a smooth function of time as
illustrated in Figure 3.4. That is, although is u’ chaotic, the average
rate of loss of energy is a smooth, repeatable function of time. This is
yet another manifestation of the fact that, although a turbulent
velocity field appears to be quite random, and is different from one
realization to the next, the statistical properties of a turbulent flow are
perfectly reproducible.

Note that there appears to be many ‘frequencies’ contributing to u/,
in Figure 3.4. This is because the velocity at any one point is the result
of a multitude of eddies (lumps of vorticity) in the vicinity of that
point, each contributing to u via the Biot-Savart law. These vortices
have a wide range of spatial scales and turn-over times, and so con-
tribute different characteristic frequencies to u/(t).

We now go further and divide up 1 ((u’)*) according to the instant-
aneous size of the eddies surrounding the probe. That is, we calculate
the relative contribution to 1 ((w')*) which comes from each of the
various eddy sizes at each instant. The manner in which this can be
done (via Fourier analysis) is discussed briefly in Section 3.2.5 of this
chapter and in more detail in Chapters 6 and 8, but for the moment the
details are unimportant. You need only know that it can be done.

When we plot kinetic energy against eddy size, r, we find some-
thing like that shown in Figure 3.5. Actually it is conventional to plot



Figure 3.5 The variation of energy with
eddy size at different times in the decay of
grid turbulence.
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energy versus wave number, k ~ 7/ rather than r itself, and, just for
the moment, we shall conform to this convention. Initially much of
the energy is centred around a wavelength of ~(bar size), corres-
ponding more or less to the size of the coherent turbulent eddies shed
from the bars of the grid. The non-linear term in the Navier-Stokes
equation then starts to redistribute this energy over a broader range of
eddy sizes. Eventually we reach stage (ii): fully developed turbulence.
We now have energy distributed over a wide range of vortical
structures (eddies) from the integral scale [ (the size of the large eddies)
down to the Kolmogorov microscale # (the size of the smallest, dis-
sipative eddies). However, the bulk of the energy is contained in large
(so-called energy-containing) eddies. If u is a typical fluctuating velocity
of the large eddies, then ((u)*) ~u”.

Once the full range of length scales have developed, from [ down to
n, we enter a process referred to as the decay of freely evolving turbu-
lence (Figure 3.5(c)). The total energy of the turbulence now starts to
decline due to viscous dissipation, with the smallest eddies decaying
fastest.

Now in Chapter 1, Section 1.6, we made two claims about the
dissipation of energy in fully developed turbulence. First, we asserted
that virtually all of the energy is dissipated in the small eddies. Second,
we suggested that the small scales have a size  ~ (ul/v)>'* 1 and a

—1/4

typical velocity v ~ (ul/v) #. One way to confirm the first of these

claims is to plot the manner in which the square of the vorticity, (®»?),

is distributed across the different eddy sizes (remember that v () is a

measure of dissipation—equation (2.20)). If we do this, then we get
1

something like Figure 3.6. The enstrophy, (;?), is indeed con-

centrated near eddies of size #, and these are very small indeed.

>m?/s.

To fix thoughts, suppose that u —=5m/s, | =2cm, and v =10~
Then the small, dissipative eddies have a size # ~ 0.02 mm, a velocity
v~0.5m/s and a characteristic timescale (called the turn-over-time)

of §/v~0.04 X 10’ s. Compare this with the turn-over-time of the
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Figure 3.6 The distribution of energy and
enstrophy in fully developed turbulence.
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larger eddies: I/u ~ 4 x 10 s. Evidently, the small eddies have a very
small turn-over-time, and since || is a measure of the rate of rotation
of an eddy, this explains why the vorticity is concentrated in the small
scales.

So, loosely speaking, we may say that the bulk of the energy, and
the bulk of the enstrophy, are held in two mutually exclusive groups
of eddies: the energy is held in the large eddies and the enstrophy in
the small eddies. Actually, a more accurate statement would be to say
that the vorticity which underpins the large eddies (via the Biot-Savart
law) is weak and dispersed, and makes little contribution to the net
enstrophy. Conversely, the small eddies are composed of intense
patches of vorticity, and so they dominate the enstrophy. However,
they make little contribution to the net kinetic energy because they
are small and randomly orientated. This general picture is true for all
high-Re turbulent flows. For example, in a typical pipe flow most of
the turbulent energy is held in eddies of size comparable with the pipe
radius, yet the majority of the enstrophy is held in eddies which are
only a fraction of a percent of the pipe diameter.

3.2.2  The rate of destruction of energy in fully
developed turbulence

We might note that the initial process of adjustment of the flow, from
stage (i) to stage (ii), is almost completely non-dissipative. Energy is
merely redistributed from one eddy size to another as the
eddies evolve (break-up?). The net energy loss is small because the
Kolmogorov scale is excited only once stage (ii) is reached.

In this section we are interested in the next phase: the decay of fully
developed turbulence. This is shown schematically in Figure 3.5(c).
There is now significant dissipation of energy and it turns out that the
smallest eddies decay fastest. This is because their turn-over-time,
which also turns out to be their break-up time, is much smaller than
that of the large eddies, n/v < 1/u.



Figure 3.7 Energy loss due to a sudden
expansion in a pipe.
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Control volume

Now we have already noted that {(u)*) ~u* and so du®/dt is a
measure of the rate of destruction of kinetic energy. It is an empirical
observation that

du® Au’®

dt l (3.6)
Here A is more or less constant and has a value of the order of unity.
(The exact value of A depends on the precise details of how we chose
to define u and L.) Of course, we met this result in Chapter 1. It may be

interpreted as

dwy  w*  (energy of large eddies) (3.7)
dt Uu (turn-over-time of large eddies) '

Evidently, the time scale of the decay of energy is I/u, which is the
characteristic time of the energy-containing eddies. So the turbulence
loses most of its energy in a few turn-over-times. This is because [/u is
the timescale for the evolution of the large, energy-containing eddies
and the process of decay is, in effect, the process of the destruction of
the large eddies. Note, however, that the decay time is very long
by comparison with the characteristic evolution time of the small
eddies, #/v.

At first sight it seems paradoxical that the rate of dissipation of
energy is independent of v.” After all, it is the viscous stresses which
cause the dissipation. However, hydraulic engineers have been aware
of this kind of behaviour for over a century. Consider, for example, a
sudden expansion in a pipe as shown in Figure 3.7. A great deal of

* Actually, it has been suggested that the rate of destruction of energy in fully devel-
oped turbulence might have a weak, logarithmic dependence on Reynolds number (Re)
which is hard to detect experimentally (e.g. see, Hunt et al. 2001, and references therein).
There is no fundamental reason why this should not be the case, although we might note
that recent direct numerical simulations by Kaneda et al. (2003) suggest that, provided
Re > 10%, the dissipation is indeed independent of Reynolds number. Consequently, in this
book we shall ignore the possibility of a logarithmic dependence of dissipation on Re.
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:) p (vp/v)~1

Vorticity
Figure 3.8 (a) A boundary layer and (b) an

analogous small-scale structure in a turbulent
flow. In both cases Re is of order unity.
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turbulence is generated in the shoulder of the expansion and this
leads to an abrupt loss in mechanical energy. The momentum
equation, coupled to a few judicious assumptions about the nature of
the flow, allows us to predict the loss of mechanical energy (per unit
mass). It is

1
(loss of energy) = E(Vl - Vz)2

where V, and V, are the mean velocities in the pipe at sections 1 and 2.
This is the famous ‘Borda head loss” equation. (Try deriving this for
yourself—see Exercise 3.6.) Now the important thing about the
expression above is that, just like equation (3.6), the rate of loss of
energy seems to be independent of v.

Some instructors like to tease undergraduates about this. How can
the dissipation be independent of 1? It is always reassuring to see how
quickly those who have already met the boundary layer see the point.
Recall that the key feature of a laminar boundary layer is that, no
matter how small ¥ might be, the viscous shear stresses are always
comparable with the inertial forces. This has to be so since it is the
viscous stresses which pull the velocity down to zero at the surface,
allowing the no-slip condition to be met. Thus, if we make v smaller
and smaller, nature simply retaliates by making the boundary layer
thinner and thinner, and it does it in such a way that v0u,/ Oy remains
an order one quantity: (0u./0y)~ (u-V)u. Thus, in a laminar
boundary layer, Re=ud/v is always of the order of unity
(Figure 3.8(a)). The same sort of thing is happening in the pipe
expansion and in grid turbulence. As we let v become progressively
smaller we might expect that the dissipation becomes less, but it does
not. Instead we find that finer and finer structures appear in the fluid,
and these fine-scale structures have a thickness which is just sufficient
to ensure that the rate of viscous dissipation per unit mass remains
finite and equal to ~u’/L. In short, the vorticity distribution becomes
increasingly singular (and intermittent) as Re — 0o, consisting of
extremely thin sheets and tubes of intense vorticity.

We might also interpret (3.6) in terms of Richardson’s energy
cascade, which was introduced in Chapter 1, Section 1.6. Recall that
most of the energy is held in large-scale eddies, while the dissipation
is confined to the very small eddies (of size #). The question is how
the energy transfers from the large scales to the small. Richardson
suggested that this is a multistage process, involving a hierarchy of
eddies from | down to #. The idea is that large eddies break up into
smaller ones, which in turn produce even smaller structures, and so
on. (Figure 3.9(a)). This process is driven by inertia since the viscous
forces are ineffective except at the smallest scales. So the rate, II,
at which energy is passed down the cascade is controlled by the



Figure 3.9 (a) A schematic representation of
the energy cascade (after Frisch). (b) The
energy cascade in terms of energy versus
wave number.
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Since the rate of destruction of energy at the small scales, &, must be
equal to II in statistically steady turbulence, and is still approximately
equal to II in decaying turbulence, we have

e~ I~ u?/l (3.8)

In summary then, there are two things that we know about the
small scales. First, they have a characteristic size, #, and velocity, v,
such that (vy/v) ~ 1. (Smaller eddies would be rubbed out by viscosity
while larger ones would not feel the viscous stresses.) Second, the

dissipation at the small scales is

& = ZI/SySy ~ VVZ/ﬂZ

¢ The term ‘break-up’ is being used rather loosely here. We describe the mechanism by
which energy is passed to smaller scales in Chapter 5. For the present purposes we might
think of an eddy as a blob or filament of vorticity, and imagine that the chaotic velocity
field associated with all of the other eddies tends to tease out the vorticity (eddy) into finer
and finer filaments. This process represents a transfer of energy from large to small scales.
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8o

and this is of the order of #” /1. If we combine the expressions (vi/ V) ~ 1
and (vw/n*)~u’/l we arrive at the Kolmogorov estimates of
Chapter 1,

N ~Re " 1~ (1 )e)* (3.9)

v~ Re V4~ (ve) (3.10)

Note that the analogy to a boundary layer raises the question as to the
shape of these small-scale structures. The term ‘eddy’ conjures up a
picture of a spherically shaped structure, but perhaps they are really
vortex sheets or tubes (Figure 3.8(b)). We shall return to this issue in
Chapter 5. Note also that viscosity plays a rather passive role in the
so-called energy cascade. Large structures in a turbulent flow ‘break-up’
into smaller ones which in turn pass their energy onto even smaller
ones and so on. This entire process is driven by inertia and viscosity
plays a role only when the eddy size reaches the dissipation scale #. In
short, viscosity provides a dustbin for energy at the end of the cascade
but does not (cannot) influence the cascade itself (Figure 3.9(b)).

3.2.3 How much does the turbulence remember?

Let us now return to our wind-tunnel experiment. Suppose that we
repeat the experiment many times using different types of grid. We
find that, provided the velocity of the large scales, u, and the integral
scale of the turbulence, [, remain the same, then the statistical prop-
erties of the fully developed turbulence do not change by much. It
seems that, as claimed by Batchelor, the precise details of the initial
conditions are unimportant as far as the asymptotic (mature) turbu-
lence is concerned. Most of the information associated with the initial
conditions is lost in the process of creating the turbulence.

This is not the complete picture, however. It turns out that there
are certain things which the turbulence remembers. That is, certain
information contained in the initial conditions is retained throughout
the evolution of the flow, despite all of the complex non-linear
interactions. This robust information is associated with the dynamical
invariants of the flow. That is, information is retained by the turbulence
as a direct result of the laws of conservation of linear and angular
momentum.

Consider the portion of a grid shown in Figure 3.10. The fluid
upstream possesses no angular momentum (no vorticity) while that
immediately downstream clearly does. The angular momentum
(vorticity) has been generated in the boundary layers on the various
bars in the grid and this is then swept downstream in the form of



Figure 3.10 (a) Part of a grid. (b) Vortices
shed from one of the bars in a grid introduce
angular momentum into the flow. (¢) A cloud
of turbulence passes down the tunnel. In
general the cloud possesses a finite amount of
angular momentum.
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turbulent vortices. In fact, we might suspect that the grid injects
angular momentum into the flow because, if loosely suspended, it will
shake and judder under the influence of the hydrodynamic forces
exerted on it by the flow. By implication, the grid must exert torques
and forces on the fluid and this results in the angular momentum of
the turbulence.

Now suppose that we latch onto a particular cloud of turbulence as
it passes down the tunnel. That is, we change to a frame of reference
moving with the mean flow and observe the properties of a fixed
volume of fluid (a control volume) in our new frame. This volume
might, for example, be a cubic control volume of size L, as illustrated
in Figure 3.10(c). From the discussion above we might expect our
moving cloud (control volume) to have non-zero angular momentum,
H= [x xu'dV, H being the sum of the angular momentum of all of
the vortices within the cloud. Moreover, this angular momentum will
be conserved by the cloud except to the extent that the lateral
boundaries exert forces on the turbulence, or there is a flux of angular
momentum out of the open faces of the moving control volume. Both
of these are surface effects, however, and in the limit that L>>1,
L being the cloud size, we might anticipate that they make only a
small change to the net angular momentum of the cloud.

It might be thought that, because of the random way in which
turbulent vortices are orientated, the net angular momentum
H= [(x X u')dV of a large cloud of turbulence will be virtually zero.
That is, when L>>1, there are a very large number of randomly
orientated eddies and so the contribution to H from individual vor-
tices should tend to cancel when added together. This is true in the
sense that H/V, the angular momentum per unit volume, tends to
zero as L/1— 0o. One manifestation of this is the fact that the time-
averaged of the stream-wise torque, T/, exerted by the grid on the
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flow is zero,

— 1 ["
T) _&?o?/o Tydt = 0.
However, for a finite volume, V, there will always be an incomplete
cancellation of angular momentum and it is possible to show that, for
large V, the residual angular momentum is at least of order V''?, that
is, |fx><u'dV|~V1/2, or greater. Moreover, as we shall see, this
residual angular momentum is sufficiently strong as to exert some
influence on the evolution of the turbulence.

In order to understand why |[H|~ V'/? (or greater) we need to
borrow a theorem from probability theory, called the central limit
theorem. We state this here in full since we shall find many subsequent
occasions in which the theorem is needed.

The central limit theorem

This theorem says the following: Suppose that X;, X,, ..., Xy are
independent random variables which have the same probability dis-
tribution, whose density function is f(x). (Remember that f(x,)dx gives
the relative number of times that x acquires a value in the range
xo—> %o+ dx, with [*_f(x)dx = 1.) We suppose that the p.d.f. has

. 2 .
zero mean and a variance of ¢°, that is,

/ xfdx = 0, a* / xzfdx.

We now form the new random variable Yy = X; + X, + - - - +Xy.
Then the central limit theorem says the following:

(1) the probability density function for Yy has zero mean and variance
No?;

(2) the p.d.f. for Yy is asymptotically normal (Gaussian) in the limit
N— o0.

Let us now return to our cloud of turbulence and see if we can use
the central limit theorem to show that [H|~ V">, Consider the fol-
lowing thought experiment. Suppose that we construct an initial
condition for a cloud of turbulence as follows. We take the velocity
field to be composed of a large set of discrete vortices (N in total)
randomly located in space and randomly orientated. The nth vortex
possesses a certain amount of angular momentum, say h,, and let us
suppose that the ith component of this, (h;),, is a random variable
chosen from the probability distribution f(x). Then (h;), has zero mean
and a variance of ¢”. Now consider the ith component of the total
angular momentum of the cloud, H; = (h;), + (h), + -+ + (i) -
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From the central limit theorem H; is a random variable of zero mean
and a variance of ¢f; = Nag?.

We now do the same thing for a sequence of turbulent clouds, that
is, we perform many realizations of our thought experiment. Each
time we arrange for the density of vortices in these clouds to be the
same, so that volume of the cloud is proportional to N, V o< N.
Now consider the square of the angular momentum in a typical cloud,
H”. Unlike H,, Hf has a non-zero mean. In fact, by definition the
ensemble average (H?) is equal to the variance of H;. So H” has a
mean (or expected) value of

(H*) = 3No* < V.

In this simple thought experiment, therefore, we expect
the mean H” to be non-zero with an expected value proportional to
the volume of the cloud. This, in turn, tells us that the expected
value of |H| is of order V"', as anticipated above. Now, as the cloud
subsequently evolves, H” can change only as a result of the forces
exerted on the fluid at the boundary of the cloud, or else as a result
of the flux of angular momentum in or out of the cloud. However,
if the domain is very large (relative to the integral scale of the
turbulence) then we might anticipate that these surface effects will
be small. If this is so (and it is not obvious that it is!), then H is a
dynamical invariant of the fluid (for each realization of the turbu-
lence) and so (H?)/V is a statistical invariant of turbulence generated
in this way.

Let us now return to our wind tunnel. If (and it is a big ‘if") we
imagine that the initial conditions for the turbulence (somewhat
downstream of the grid) consist of a random set of vortices which
have been shed from the grid, then we have the same situation as in
our thought experiment. If we track a large volume of the turbulence
as it moves downstream we might anticipate that (H*)/V is an
invariant of that volume. So there is the possibility that the turbulence
remembers some of the information embedded in its initial conditions,
a phenomenon which used to be called the permanence of the big eddies.

Invariants of the form (H”)/V are called Loitsyansky invariants and
there is a similar invariant, (L?)/V, which is based on the linear
momentum of the turbulence, L= [u’dV. This is usually called the
Saffman invariant, though a historically more accurate name would be
the Saffinan-Birkhoff invariant. (Here u’ is the velocity in a frame of
reference moving with the mean flow.) It should be said, however,
that there is considerable controversy over the existence or otherwise
of these invariants. (H?)/V may be finite or divergent (as V— 00)
depending on how we envisage the turbulence to be created. More-
over, even if (L?)/V or (H?)/V are finite, there is the possibility that
they vary due to surface effects over the volume V. In fact, the entire
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subject of integral invariants is a can of worms—but it is an important
can of worms.

We take up the story again in Chapter 6 where we shall see that
there are two schools of thought. Some argue that (L*)/V is zero in
grid turbulence, because of the way in which the turbulence is gen-
erated, but that (H”)/V is non-zero and very nearly, but not exactly, a
constant. (It is not strictly conserved due to surface effects.) Others
argue that (L*)/V is non-zero and strictly conserved, and that in such
cases (H’)/V diverges as V— 0o. The near invariance of (H?)/V, or
exact invariance of (L?)/V, turns out to impose a powerful constraint
on the evolution of grid turbulence. In particular, we shall see that our
two possibilities lead to (H?)/V~u’l’ &~ constant, or else (L?)/
V ~ u’’ = constant. Opinion is sharply divided over which of these two
options is correct. Computer simulations of turbulence show that,
depending on the initial conditions, both may be realized, but the
wind-tunnel experiments themselves are not sufficiently clear-cut to
distinguish unambiguously between the two possibilities. We shall
return to this difficult issue in Chapter 6. In the meantime, the
important point to note is that there is a possibility that grid turbu-
lence does remember aspects of its initiation and this memory is closely
related to the principle of conservation of momentum.

In the rest of this chapter we shall leave aside the possibility of
Loitsyansky or Saffman-type invariants and take the position,
espoused by G.K. Batchelor, that the turbulence has a short memory
and that fully developed turbulence approaches a statistical state
which is independent of the precise form of the initial conditions. This
is a flawed view. However, it does provide a convenient starting
point.

Example 3.1 Kolmogorov’s decay law
Show that the energy equation (3.6), combined with the constraint
imposed by the conservation of angular momentum, u’’ = constant,

10/7

yields #” ~t %7, (This is known as Kolmogorov’s decay law and is

observed in some computer simulations of turbulence—see Chapter 6.)

3.2.4 The need for a statistical approach and different
methods of taking averages

We have already emphasized the need for a statistical approach to
turbulence. Despite the fact that the Navier-Stokes equation is per-
fectly deterministic, the turbulent velocity field, u(t), appears to be
quite random. Consider, for example, measurements of one of the
transverse components of velocity, u (), made at a particular location

in our wind tunnel. Suppose we measure u | (t) for, say 100s, wait a
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Figure 3.11 The p.d.f. for u,(t) in grid
turbulence.
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while, and then measure the velocity for a further 100 s. Although the
trace of u | (t) will look quite different in the two readings, the statis-
tical properties of the two signals will be very similar. For example,
suppose we plot the p.d.f. of u (t), that is, the relative number of times
that u | attains a particular value. Provided the two traces of u (t)
represent large enough samples, the p.d.f. for the two readings will
look virtually identical (Figure 3.11).

In Section 3.2.7 of this chapter we shall see that the probability
distribution shown above is very nearly Gaussian. For the present
purposes, though, this is unimportant. The essential point is that,
although the detailed properties of u,(t) seem to be highly dis-
organized and unpredictable, its statistical properties are reproducible.
The implication, of course, is that any theory of turbulence must be a
statistical theory. The basic object of such a theory—the quantity
which we wish to predict—is the velocity correlation tensor. This plays
the same role in turbulence theory as velocity does in laminar flow.
We shall discuss the velocity correlation tensor, and its various relat-
ives, in the next section. First, however, we need to introduce a few
more ideas from statistics. In particular, we need to formalize what is
meant by an average and what we mean when we say that two
quantities are statistically correlated.

Suppose we insert three small velocity measuring devices just
downstream of one of the bars in our grid, at locations A, B, and C.
The trace of u () at A, B, and C might look something like that shown
in Figure 3.12. What is happening at A looks a little like what is
happening at B, though somewhat out of phase. This is because of the
periodic vortex shedding. Even though the signals are quite different
in detail, there is, on average, some similarity. In particular, if we
multiply u4 and up and then time-average the product, we will get a
non-zero value, iziug # 0. (As usual, an overbar represents a time-
average.) Now consider point C, well downstream of the bar. Events
at C are not strongly related to those at either A or B and so the trace
of uc looks quite different. If we form the product usuc or uguc, and
take a time-average, we find something close to zero, uzuc ~ 0. We
say that the points A and B are statistically correlated, while A and C
are uncorrelated (or only weakly correlated). Note that statistical
correlations are established via an averaging procedure—in this case a
time-average.

There are other types of averaging procedures. Time-averages are
convenient because they have a clear physical interpretation and are
simple to visualize. However, they are meaningful only if the turbu-
lence is statistically steady. There are two other types of averages in
common use: the ensemble average and the volume average. Perhaps it is
worth taking a moment to highlight the similarities and differences
between these various forms of averaging.
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Figure 3.12 Traces of velocity against
time. Points A and B are statically
correlated while A and C are not.
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Suppose we have a large tank of water which we vigorously stir (in
some carefully prescribed manner). The water is then left to itself and
we wish to study the statistics of the decay process. We might, for
example, have a velocity probe which measures the velocity of the
turbulence, u’, at a particular location in the tank, A. A natural
question to ask is, how does the average kinetic energy of the tur-
bulence decay with time?’. The problem is, of course, that we do not
have a clear definition of the word ‘average’ in this context. The
turbulence is not statistically steady and so we cannot interpret
‘average’ to mean a time-average. One way out of this mess is to
revisit the idea of ensemble averaging, which we introduced in
Section 3.2.1 of this chapter.

Suppose we repeat the experiment 10,000 times. Each realization
of the experiment is, as far as we are concerned, identical. However,
as we have seen, minute variations in the initial conditions will
produce quite different traces of u'(t) in each experiment. We now
tabulate (u’)* against time for each realization and then, for each
value of t, we find the average value of (u’)”. This average, denoted
(")), is called an ensemble average. It is function of time but,
unlike (u)*(t), it is a smooth function of time (Figure 3.13). It is also



Figure 3.13

Decaying turbulence in a tank.
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reproducible. If we come back the next day and do another 10,000
experiments, create a new ensemble average, {(u’ )2>, and compare it
with the first one, we will find that they are identical. (This assumes,
of course, that 10,000 realizations are sufficient to achieve statistical
convergence.)

We can also use ensemble averaging to detect statistical correlations
between different points in the flow. Suppose that in our 10,000 real-
izations we measure u at both A and B. We wish to know if these
points are statistically correlated. (We suspect that if the points are
close they will be correlated, because an eddy can simultaneously span
both points, ensuring that events at the two locations are related. If
the points are remote, on the other hand, then the correlation should
be weak.) One way to measure the correlation is to form the product
(ul.) (1), for each realization. Since (u.), and (u.), are both random
signals we will find that (u),(u); is also a random function of time.
However if, for each instant t, we form an ensemble average over all
of the experiments, ((u.),(u.);), we will obtain a reproducible
quantity which, like ((u)*), is a smooth function of time. If what is
happening at A is very similar to what is happening at B, then
((u),(u))g) will be nonzero. If A and B are very distant then
(60, (1)y) ~ 0.

A third form of averaging is the volume (or spatial) average. Sup-
pose that, once again, we wish to determine how some average
measure of (u’)* decays with time in our water tank. However, we are
short of time and wish to perform only one experiment. We could,
in principle, measure (u’)®> at many locations in the tank (at
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Figure 3.14 Definition of Q,, and f(r).
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10,000 points). At any one instant we now average over all of the
different measurements of (u’)” in the tank. The result, (u')7,;, will be
a smooth, reproducible function of time, rather like ((u’)?).

So we have three methods of averaging: the time-average, m, the
ensemble average, ((~)), and the volume average. It may be shown
that, provided u'(x, t) satisfies some rather mild conditions, which are

usually met in practice, then:

(1) time-averages equal ensemble averages in steady-on-average
flows, (~) = ((~));

(2) volume averages equal ensemble averages in homogeneous tur-
bulence (turbulence in which the statistical properties do not
depend on position).

3.2.5  Velocity correlations, structure functions, and the
energy spectrum

The discussion so far has been more than a little qualitative. At some
point we have to start developing quantitative arguments and this, in
turn, means that we must introduce useful measures of the state of a
turbulent flow. Consequently, in this section we introduce some
statistical quantities which help quantify the state of a cloud of tur-
bulence. There are three interrelated quantities commonly used for
this purpose:

o The velocity correlation function.

e The second-order structure function.

e The energy spectrum.

The workhorse of turbulence theory is the velocity correlation function,
Qy = (w(X)u(x + 1)) (3.11)

In general Qj is a function of x, r, and ¢. If Q;; does not depend on time
we say the turbulence is statistically steady, and if Q;; does not depend
on x we say that the turbulence is statistically homogeneous, or just
homogeneous. Note that Q; is defined in terms of the turbulent
component of u, that is, u’. For example, in our wind tunnel we have
to subtract out the mean velocity in the tunnel, V, before we calculate
Qy- Alternatively, we could measure u in a frame of reference moving
with velocity V.

So what does Q;; represent? Consider Q. (ré,) = (u,(x)u,(x + re)).
This tells us whether or not /. at one point, 4, is correlated to u at an
adjacent point, B (Figure 3.14). If the velocity fluctuations at A and B are
statistically independent then Q,, = 0. This might be the case if r is very
much greater than the typical eddy size. On the other hand, as r — 0 we
have Qu — ((u)*). In general, Q; tells us about the degree to which,



Figure 3.15 The shape of the longitudinal

and lateral velocity correlation functions.
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and the manner in which, the velocity components at different points
are correlated to each other.

Now sometimes it turns out that a cloud of turbulence has sta-
tistical properties which are independent of direction. That is, all
ensemble averages have reflectional symmetry and are invariant under
rotations of the frame of reference.” This is referred to as isotropic
turbulence. Turbulence in a wind tunnel is approximately homo-
geneous and isotropic.® The idealization of homogeneous, isotropic
turbulence is such a useful concept that we shall devote the rest of this
section to it. We start by introducing some notation. Let us define u
through the equation

W= () = () = () (3.12)

This is consistent with our earlier definition of # as being a typical
velocity of the large eddies. (Note that we have dropped the primes on
u in (3.12). We shall do this in the remainder of this section on the
assumption that, through a judicious choice of the frame of reference,
the mean flow is zero.) Two typical components of Q;; are

Que(réy) = w'f(r) (3.13)

Qyy(rey) = u’g(r). (3.14)

The functions f and g are called the longitudinal and lateral velocity

correlation functions (or coefficients). They are dimensionless, satisfy

fl0) =¢g(0) = 1, and have the shape shown in Figure 3.15. It turns out

that f and ¢ are not independent but are related by the continuity

equation (2.3). In fact, we shall see in Chapter 6 that 2rg = (" f)’.
The integral scale, I, of the turbulence is often defined as

= /Ooof(r)dr. (3.15)

This provides a convenient measure of the extent of the region over
which velocities are appreciably correlated, that is, the size of the large
eddies.

We now come to an important point. It is evident from Figure 3.12
that there is a wide range of frequencies embedded in a typical
turbulent signal. This reflects the fact that turbulence is, in effect, a
hierarchy of tangled vortex tubes and ribbons of varying sizes,

7 Aless restrictive form of isotropy is where the turbulence has rotational symmetry
but not reflectional symmetry. Such turbulence can possess helicity. However, we shall
stay with the definition above.

® It cannot be perfectly homogeneous or isotropic because it decays along the length
of the tunnel. Moreover, the grid itself introduces anisotropy, and if no particular effort
is made to avoid this then typically u, is some 10% greater than the perpendicular
fluctuations. However, we shall gloss over these imperfections here.
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advecting each other in a chaotic fashion. In mature turbulence the
vortex blobs (eddies) vary in size from the minute to the large, and
these all have different characteristic timescales, that is, frequencies. So
the rapid fluctuations evident in Figure 3.12 correspond to small
eddies in the vicinity of the velocity probe, while the low-frequency
components are a reflection of larger, slowly rotating structures.

It is natural to try and build up a picture of what this population of
eddies looks like. For example, we might ask: what is the size dis-
tribution of the eddies? Unfortunately, if we extract only mean
quantities, such as {(u’)?), from a velocity signal then all of the
information relating to the eddy size distribution is lost. So how can
we reconstruct a picture of the eddy population, such as its size dis-
tribution, from a turbulent signal of the type shown in Figure 3.12? It
turns out that this is a non-trivial task, made all the more difficult by
the fact that we have carefully avoided giving a precise definition of an
eddy. (Is it a vortex tube, a vortex ribbon, or a localized blob of
vorticity?) Nevertheless, there are ways, all-be-it imperfect, of
extracting some information about the distribution of eddy sizes from
velocity measurements.

The first thing to note is that Q;; does not, in of itself, tell us how the
kinetic energy is distributed across the different eddy sizes. Rather, we
must introduce two additional quantities which, in their own ways,
attempt to fulfil this requirement. These are the energy spectrum and
the structure function. Both are closely related to Q.

We start with the second-order longitudinal structure function. It is
defined in terms of the longitudinal velocity increment, Av =
(X + 7€) — uy(x), as follows:

<[Av]2> = <[ux(x +réy) — ux(x)]2>. (3.16)

More generally, the structure function of order p is ([Av(nT). It seems
plausible that only eddies of size ~r, or less, can make a significant
contribution to Av, and so {[Av]’) is often taken as an indication of the
energy per unit mass contained in the eddies of size r or less. Of course

{([AV(NT?) and fir) are related by
([AV()]?) = 24*(1 — f) (3.17)
and so for large r,
W 41,
AV = 3 <zu >
We might anticipate, therefore, that

4
([Av(n)]*) ~ g[all energy in eddies of size r or less|.



Figure 3.16 The shape of the energy
spectrum for a random array of simple
eddies of fixed size r.
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Actually this turns out to be a little too simplistic. Eddies larger than r
do make a contribution to Av and this contribution is of the order of
r X (velocity gradient of eddy), or r X |@|. Thus a better interpretation
of ([Av]?) would be,

4
{[Av()]*) ~ 3 [all energy in eddies of size r or less|
+ 7* [all enstrophy in eddies of size r or greater].

(3.18)

An alternative convention, however, is to work with wave number
rather than eddy size, and to use the Fourier transform to identify
structures of different sizes. In particular, a function, called the energy

. . .9
spectrum, is introduced via the transform pair:

B(k) = % /0 " R(r)kr sin(kr)dr (3.199)

R(r) = / () 28 g (3.19b)
0 kr

where R(r) = 1 (u(x) - u(x +r)) = u*(g +f/2). It is possible to show
(see Chapter 6) that E(k) has three properties:

(1) B®) 20,

(2) for a random array of simple eddies of fixed size r, E(k) peaks

around k ~ 7/7;
(3) from (3.19b), in the limit r — 0, we have

) = /0 " Bk, (3.20a)

In view of these properties it is customary to interpret E(k)dk as the
contribution to 7 (u?) from all eddies with wave numbers in the range
k — k4 dk, where k~m/r. This provides a convenient measure of
how energy is distributed across the various eddy sizes. It should be
emphasized, however, that this is a flawed view of E(k). Consider
property (2) above. It is true that eddies of size r contribute primarily
to E(k) in the range k ~ n/r. However, they also contribute to E(k) for
all other values of k. In fact, we shall see in Chapter 6 that a random
array of simple eddies of fixed size v has an energy spectrum which
grows as k' for small k, peaks around 7/r, and then declines expo-
nentially (Figure 3.16). The key point is that eddies of given size
contribute to E(k) across the full range of wave numbers.

® This definition of E(k) is adequate for isotropic turbulence. However, if the
turbulence lacks isotropy a more general definition is required (see Chapter 8).
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Nevertheless, the conventional interpretation of E(k), that it represents
the energy in eddies of size 7/k, is convenient and works well for many
purposes. Consequently we shall adopt this as a kind of shorthand."® (It
goes badly wrong, however, if we consider or k<I"' or k>n"")

In Chapter 8 we shall see that E(k) has one further property

1 o0
3 (@?) = / k*Edk (3.20b)
0

and so k’E(k)dk is interpreted as the contribution to the enstrophy,
2{®?), from the range of wave numbers k — k -+ dk.

It seems that both ([Av(r)]?) and E(k) make some claim to distin-
guish between scales, the energy spectrum through (3.20a, b) and
([Av(r)]?) via (3.18). It is natural, therefore, to try and find the rela-
tionship between these two functions. In principle this is straightfor-
ward. Equation (3.19b) relates R(r) to an integral of E(k), and R(r) can,
in turn, be related to fand hence to ([Av]*). The details are spelt out in
the example at the end of this section where we find that,

<[AV]2> = %/m E(k)H(kr)dk, H(x)=1+3x *cosx —3x  sinx.

This does not look too promising, until we spot that a good
approximation to H(x) is,

H(x) ~ { (x/m)?, forx<m
1, for x > 7.

It follows that

{([Av(n)]*) ~ %/ﬂ;o E(k)dk +:_71:2/0"/Y k*E(k)dk (3.21a)

In view of our approximate interpretation of E(k) we might rewrite
this as,

<[AV(1’)]2> ~ g [all energy in eddies of size r or less]

4
+ (3?) r? [enstrophy in eddies of size r or greater}

(3.21b)

1% An alternative, but equivalent, definition of Ek) is given in Chapter 8. Suppose that
uk) represents the three-dimensional Fourier transform of u(x). If the turbulence is
isotropic it may be shown that E(k)d(k — k') = 27k* (4’ (k) - d(k’)) where k and k’ are
distinct wave numbers, * represents a complex conjugate, k= \k\, and ¢ is the three-
dimensional Dirac delta function. So E(k) is a measure of the energy contained in the kth
mode of (k). Now when we take the Fourier transform of a random signal the rapid
fluctuations tend to be associated with the large wave numbers and the slower fluc-
tuations with the small wave numbers. Thus E(k) is associated with small eddies if k is

large, and large eddies if k is small.



Figure 3.17 (a) The general shape of {[Av]?).
(b) The general shape of E(k).

Some elementary properties of freely evolving turbulence

(a) 1} [av)®

2u2 ______________

Inertial subrange

£

l
r:]’,—.lil
|

r‘Q

Large
eddies
Inertial subrange

K

- Log(k)

Y

1

Universal equilibrium range

This has a reassuring similarity to our heuristic estimate (3.18). Of
course (3.21b) cannot be exactly true because it is quite artificial to
categorize the influence of eddies according to whether they are
smaller or greater than r. The cut off is too sharp. Nevertheless, (3.21a)
captures the main features of the relationship between E(k) and
([Av(n]?). The general shapes of ([Av]®) and E(k) are shown in
Figures 3.17 (a) and (b).

Earlier we saw that vorticity tends to be concentrated in the
smallest eddies and is rather weak in the large scales (consult
Figure 3.6). Thus, provided we are not too close to the dissipation
scales, we might simplify (3.21b) to

([Av(n)]*) ~ g [all energy in eddies of size r or less

and indeed this approximation is commonly used. However, this is
often dangerous since the second term in (3.21a) can make a sig-
nificant contribution to (Av)®. For example, it is readily confirmed
from (3.21a) that, for small r, we have,

<(Av)2> ~

1.013
2\, 2 2\ 2
S I Mty ) P
312 () 15 ()

Actually it turns out that the exact relationship is (consult Chapter 6),

Av)*) = L (@?)r* + - -, the 1.3% error having crept in because of
15 g crep
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the approximation to H(kr) made in deriving (3.21a). It seems that, for
small r, the second-order structure function is controlled by the
enstrophy, rather than energy. This highlights the danger of inter-
preting ([Av]®) purely in terms of energy, particularly when we are
close to the dissipation scales.

In summary, then, we have two functions, E(k) and ([Av]®), which
claim to give an impression (all-be-it a rather imperfect one) of the
spread of energy across the different eddy sizes. It is now clear how
graphs of the type shown in Figures (3.5), (3.6), and (3.9b) can be
constructed. They are simply plots of E(k). It must be constantly borne
in mind, however, that this is a naive interpretation of E(k). Suppose, for
example, that we have a velocity field which is composed of compact
structures (eddies) of size [ and less. When we take the transform we
find that E(k) is a continuous function and in particular it has a sig-
nificant component in the range k=0 — n/l. However, there are no
eddies in that range. In short, the shape of E(k) for small k is controlled
by eddies of size much smaller than k™", as indicated in Figure 3.16. It is
a common mistake to talk of the energy of eddies which do not exist!

Finally, we note that the whole notion of dividing up the energy
and attributing the various parts to different eddies is a little artificial.
Suppose, for example, that we have three eddies (small, medium, and
large) with individual velocity fields u,, u,, and u;. We now suppose
that all three simultaneously exist in the same region of space, so the
total energy is

KE_%/[ueru;JruiﬂLZ(“l wp b g us b ) AV

Do we associate the cross terms like u; - u, with the small or medium-
sized eddies?"" With these words of caution we now go on to consider
some of the more general properties of ([Av]*) found in grid turbu-

lence.

Example 3.2 Use the relationship to 2rg=(rf)’ show that
2FFR=u*(" f)'. Now use (3.19b) to confirm that

([Av]*) g/oooE(k)H(kr)dk, H(x) =14 3x *cosx —3x  sinx.

3.2.6 Is the asymptotic state universal?
Kolmogorov’s theory

We now consider the structure of freely decaying, fully developed
turbulence of the type produced by a grid. We adopt the position that

" This problem is resolved to some extent if the eddies are of very different sizes
since the cross terms are then relatively small. (See Chapter 5.)
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the details of the initial conditions are unimportant and ignore, for the
moment, the existence of integral invariants such as Saffman’s invar-
iant and Loitsyansky’s invariant. Our main aim is to show that
arguments of a rather general kind can be used to make specific
predictions about how energy is distributed across the different eddy
sizes. Given the complexity of turbulence, it is rather surprising that
this is possible, yet it seems that it is!

If we draw up a list of all of the things which might influence the
instantaneous shape of ([Av]®) we might come up with

<[Av]2> = F(u,r,t,v,BG,1)

where BC stands for boundary conditions and [ is the integral scale.
However, in grid turbulence we may take the turbulence to be
approximately homogeneous and isotropic and so the boundary
conditions may be dropped from this list:

<[AV]2> = F(u,v,1,1,t). (3.22)

Note that # and [ are themselves functions of time and so t makes
three appearances in (3.22). In dimensionless terms we have

(8P) =B (%, T Re). (3.23)
where Re=ul/v is the usual Reynolds number. As it stands, this
expression is so general that it is of little use, so we must apply some
physical reasoning in order to simplify (3.23). We have suggested that
the behaviour of the largest eddies is independent of v since (when Re
is large) the shear stresses are very weak at the large scales. It follows
that, for large r,

A t
([Av]*) = uZFG, %) (3.24a)
In fact, the measurements suggest that we can go further and that, to a
reasonable level of approximation, we can drop the parameter ut/L.
This yields a self-similar expression in which t appears only implicitly

in terms of 4 and [
<[AV]Z> = u’F G) (large eddies only) (3.24b)

Now consider eddies which are substantially smaller than . They have
a complex heritage, having come from the break-up of larger eddies,
which in turn came from yet larger structures, and so on. Kolmogorov
suggested that these eddies are aware of the large scales only to the
extent that they feed kinetic energy down the energy cascade at a rate
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I1~¢&~u’/l. Thus, for these smaller eddies, we should replace
(3.22) by,

<[Av]2> = F(e,v,t,7), r < 1

Next we note that the decay time of the turbulence is extremely long
by comparison with the turn-over time of the small eddies. As far as
they are concerned the turbulence is virtually in a state of statistical
equilibrium, that is, it is almost steady-on-average. Thus we may
anticipate that t is not a relevant parameter (except to the extent that
¢ varies with t) and we might speculate that

([AV]*) = F(e,v, 1), r< L (3.25)

This is considerably simpler than (3.22) and was first suggested by
Kolmogorov in 1941. Equation (3.25) should not be passed over
lightly: in many ways it is a remarkable statement. Consider Plate 8(b),
which shows small-scale eddies in a computer simulation. According
to (3.25) the dynamics of this complex tangle of vortex tubes is con-
trolled exclusively by € and v. It took the genius of Kolmogorov to see
that such a simplification was possible. If we now introduce the
Kolmogorov microscales of length and velocity, (3.9) and (3.10), we
can rewrite (3.25) in the dimensionless form

([AV]*) = VPF (%) r <l (3.26)

Here F should be some universal function valid for all forms of iso-
tropic turbulence. However, many forms of turbulence, such as jets
and wakes, are strongly anisotropic. Would we expect (3.26) to hold in
such flows? Kolmogorov suggested that it should since the large-scale
anisotropy in, say, a jet is not strongly felt by the small scales. That is,
anisotropy is normally imposed at the large scales and its con-
sequences become progressively weaker as we move down the energy
cascade. So Kolmogorov suggested that (3.26) should hold for all
turbulence—jets, wakes, boundary layers, etc.—and indeed there is
considerable evidence that this is so. For this reason that part of the
spectrum for which (3.26) applies is referred to as the universal equi-
librium range. This is indicated in Figure 3.17(b).

Now suppose that Re is very large. It is possible, then, that there
exists a range of eddies which satisfy (3.26) (i.e. they are in statistical
equilibrium and ‘feel’ the large scales only to the extent that they
determine ¢), yet they are still large enough for the shear stresses to
have no influence on their motion. In such a case (3.26) must take a
special form since v is no longer a relevant parameter. The only

possibility is

([AV]) = B/, p<r<l (3.27)
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Table 3.2 Approximate form of the structure function for
grid turbulence at high Re in the absence of a Loitsyansky

or Saffman invariant

Regime Range of ¥ Form of {[Av]’)
Energy-containing eddies r o~ 1 ([AV]?) = w*F(r/1)
Inertial subrange n<rl  ({[Av]?) =B
Universal equilibrium range <1 ([AV]?) =v*F(r/n)

where f (Kolmogorov’s constant) is a universal constant thought to
have a value of ~2. This intermediate range is called the inertial
subrange and it exists only for § < r < L. Equation (3.27) is known as
Kolmogorov’s two-thirds law and it is one of the most celebrated
results in turbulence theory. Its validity, or otherwise, rests entirely
on the hypothesis that the intermediate eddies are controlled
exclusively by e.

Of course, this entire discussion has been more than a little heur-
istic. What, for example, do we mean by an ‘eddy’, by ‘eddy break-up’,
or by ‘feeling the large scales’? The most that we can do is tentatively
suggest these relationships and then study the wind-tunnel data to see
if they do, or do not, hold true. Actually it turns out that it is difficult
to get Re high enough in a typical wind tunnel to achieve a substantial
inertial subrange. Nevertheless, this has been done on several occa-
sions and the results are intriguing. It turns out that the data in the
universal equilibrium range can indeed be collapsed using (3.26), and
even more surprisingly, (3.27) is an excellent fit to data in the inertial
subrange! So despite the rather vague nature of the physical argu-
ments, the end results appear to be valid. These relationships are
summarized in Table 3.2 and the various regimes are indicated in
Figure 3.17(a) and (b).

However, this is not the end of the story. We shall see later that
these arguments are too simplistic in at least two respects. First, we
have ignored the existence of Saffman- or Loitsyansky-type invariants
and it turns out that when these exist they dominate the behaviour
of the large eddies. (They do not, however, call into question
Kolmogorov’s arguments.) Second, it turns out that the dissipation of
energy at the small scales is very patchy in space. This raises the
question of whether or not the & which appears in Kolmogorov’s
arguments should be a global average for the flow as a whole or some
local average of & over a scale less than [ It turns out that this
necessitates a modification to Kolmogorov’s description of the small
scales. We shall return to these issues in Chapters 5 and 6 where we
take a more critical look at Kolmogorov’s theory.
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3.2.7 The probability distribution of the velocity field

Statistics show that of those who contract the habit of eating, very few will
survive. (W.W. Irwin)

We close this chapter with a brief discussion of the probability
distribution of u(x, t) and its derivatives. (Again, we omit the prime on
u on the understanding that we are talking only of the turbulent
component of velocity.) One of the main points we wish to emphasize
is that the probability distribution is not Gaussian. This is important
because several ‘models’ of turbulence assume that aspects of the
turbulence are Gaussian. Also, we wish to show how measurements of
the probability distribution of u can provide hints as to the spatial
structure of freely evolving turbulence.

Let us start by recalling some elementary statistics. The probability
distribution of some random variable, X, is usually represented by a
p.d.f. which is defined as follows. The probability that X lies in the
range a — b, which we write as P(a <X <b), is related to the prob-
ability density function by

Pa < X< b)— /bf(x)dx.

Thus f(x)dx represents the relative likelihood (sometimes called relat-
ive frequency) that X lies in the range x — x + dx. Evidently f has the

property

/_:f(x)dx =1

since the sum of the relative likelihoods must come to 1. The mean of
a distribution (sometimes called the expectation of X) is given by

)= /_:agf(xwx — ()

while the variance, ¢, is defined as
o= [ Wi

We are primarily concerned with distributions with zero mean, in

which case

o = /_ U Rfod— (), () —o.

[oe]

Of course, g, is the standard deviation of the distribution. The skewness
factor for a distribution of zero mean is defined in terms of the third
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moment of f:

S= </_OO Xf(x)dx/a” = (XB)/(X2>3/2

while the flatness factor (or kurtosis) is a normalized version of the

fourth moment

o= [ i/t = (x)/ )’

o

A very common distribution is the Gaussian or normal distribution,
which has the form

1

09 = e [ (e~ )"/ (207

27

When f has zero mean this simplifies to

1

o)~ —ep [/ 2]

This is symmetric about the origin and so has zero skewness. It has a
flatness factor of d =3. The Gaussian distribution is important since
the central limit theorem (see Section 3.2.3 of this chapter) tells us that
a random variable, which is itself the sum of many other independent
random variables, is approximately Gaussian.

Example 3.3 Intermittency and the flatness factor

Confirm that a Gaussian distribution has a flatness factor of 3. Now
consider a distribution g(x) which comprises a dJ-function, of area
1 — 7, at the origin surrounded by a Gaussian-like distribution of area 7.
That is:

2

\/Exp[@], X#O.

This represents a signal which spends (1 —7)% of its time dormant,

8(x) =

and occasionally bursts into life (Figure 3.18). Show that the variance
of g(x) is ¢° = 70+> and that the flatness factor is 3/7, that is, larger than
a Gaussian. Thus we have

2

3/2 »
8) = xp[(zT)] x 0.

If we compare this with a Gaussian distribution of the same variance
we see that, for large x, g(x) is greater than the equivalent Gaussian
distribution. This is typical of a so-called intermittent signal, that is, a
signal which is quiescent for much of the time, and occasionally burst
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Figure 3.18 An example of an intermittent

signal.

I00

into life. Their p.d.fs have a high central peak and broad skirts, so that
both near-zero and unexpectedly high values are more common than
in a Gaussian signal. Intermittent signals can be recognized by their
large flatness factor. O

With this brief introduction to statistics let us now return to tur-
bulence. We start by looking at the probability distribution of u
measured at a single point. (Later we shall look at the probability
distribution of differences in u between two adjacent points.) Suppose
we make many measurements of one component of u, say u,, at a
particular point in a wind tunnel. (Remember, we take u to represent
the turbulent velocity so we are assuming the mean flow in the tunnel
is subtracted out of the measurements.) We now plot the relative
number of times that u, attains a particular value, that is, we plot the
density function f(x) for u,. The end result looks something like that
shown in Figure 3.11.

It turns out that the probability density shown in Figure 3.11 can be
fitted closely by a Gaussian p.d.f. It is symmetric and has a flatness
factor, <uj'c> / <uf(>2 in the range 2.9-3.0. (Recall that the flatness factor
for a normal distribution is 3.) One interpretation of this normal dis-
tribution for u, is that the velocity at any one point is the consequence
of a large number of randomly orientated vortical structures (i.e. blobs
of vorticity) in its neighbourhood, the relationship between u, and the
surrounding vorticity being fixed by the Biot-Savart law. If these
vortices are randomly distributed, and there are many of them, the
central limit theorem (see Section 3.2.3 of this chapter) says that u,
should be Gaussian, which is exactly what is observed.

The story is very different, however, if we examine the probability
distribution for gradients in u, or else the joint probability distribution
for u at two points. Here we find that the p.d.fs are definitely not
Gaussian and indeed this non-normal behaviour is essential to the
dynamics of turbulence. Consider, for example, the fourth-order



Figure 3.19 Flatess and skewness factors
for (u,)4 — (4,)p in grid turbulence (schematic
only).

Some elementary properties of freely evolving turbulence

p >
10l <AV oAV
3.0 — 0.2~
N
z . ,

structure function ([Av]*) normalized by ([Av]*)%. Of course, this is
the flatness factor, J, for (u,)4 — (u,)p where A and B are adjacent
points, x+r&, and x. d(r) has the shape shown in Figure 3.19. It
approaches the Gaussian value of 3.0 only for large r, and is greater
than 3 for small . The fact that 6(r) = ([Av]")/([Av]*)* approaches 3
as the separation, 7, tends to infinity simply indicates that remote
points are approximately statistically independent. That is, if (u,), and

(u,)p are statistically independent then it may be shown, by expanding
([Av]"), that'?

(Av]) 3 1 ()

o T ey
and we have already noted that the flatness factor for u, is ~3.0. For
r— 0 we find that J is a function of the Re =ul/v. For the modest
values of Re found in a windtunnel, §(0) ~ 4. For higher values of Re,
however, we find 6(0) ~ 4 — 40. The rule seems to be that the higher
the value of Re, the larger the flatness factor.

The fact that J is large, relative to a normal distribution with the
same variance, tells us that the p.d.f. for Av has a high central peak
and relatively broad skirts, so that both near zero and unexpectedly
high values of |Av| are common. This is consistent with a signal which
is dormant much of the time and occasionally bursts into life. (See
Example 3.3.)

The situation is similar for the third-order structure function. The
skewness factor for u, is (u2)/ <ui>3/2 and this is very close to zero
since the probability density function for u, is more or less symmetric.
The skewness factor for (uy), — () is evidently S(r)= ([Av]®)/
([Av]?)*". In contradistinction to (u?)/ <ui>3 ? | this is not zero. It has
a value of around —0.4 for r— 0 and decays slowly with r. The
precise shape of ([Av]’)/(JAv]*)*’* depends (slightly) on Re but a
typical distribution is shown in Figure 3.19. Usually one finds
S(0) ~ —0.420.1 for Re up to 10°, with higher values of Re tending to
favour slightly higher values of |S|.

2 In performing this expansion it is necessary to recall that, if ¢ and b are statistically
independent, then <ab> = <a> <b>.
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Figure 3.20 Schematic of the p.d.f. for Ou,/
Ox. (The departures from a Gaussian dis-
tribution are exaggerated.)

102

For small r the probability distributions for ()4 — (#,) and Ou,./Ox
become identical. For example, if r= dx is small,

([AV]) _ {(Ouy/0x)") -
(MY () 0x)?)?

S(r—0) =8, = (3.28)

It follows that Ou,/Ox is non-Gaussian, with a skewness factor
of ~ —0.4 and a flatness factor of anything from 4 to 40. The p.d.f. for
Ou,./ Ox is shown schematically in Figure 3.20. Small positive values of
Ou,/Ox are more likely than small negative ones. However, large
negative values of Ou,./ Ox are more likely than large positive ones, and
this dominates the skewness, giving a negative value of S.

The fact that the flatness factor for Ou,/Ox is not Gaussian, growing
to extremely high values as Re increases, tells us something important
about the spatial structure of turbulence. Large values of ¢ correspond
to a highly intermittent signal in which Ou,./0x is nearly zero much of
the time but periodically bursts into life. In short, the spatial dis-
tribution of the velocity gradients (i.e. the vorticity) is rather spotty,
with the enstrophy being localized into small, intense patches of
vorticity, the patches themselves being sparsely distributed through-
out space. Moreover, it seems that the higher the value of Re, the
more patchy the vorticity distribution becomes. This is the first hint
that the vorticity in a turbulent flow is highly intermittent; an
observation which turns out to have profound consequences for
Kolmogorov’s theories.

Perhaps we should not be surprised by the observed intermittency
in vorticity. Think about the evolution of the vorticity field in grid
turbulence. All of the vorticity originates from the boundary layers on
the grid bars. This spills out into the flow in the form of turbulent
Karman vortices. These vortices then interact, the velocity field
induced by any one vortex advecting all the other vortices. The
vortices start to intermingle and turbulence ensues. The resulting
velocity field, which is chaotic, is simply a manifestation of the evol-
ving vorticity field. That is, the instantaneous distribution of u can be
attributed, via the Biot-Savart law, to the instantaneous distribution
of ®. So, as the lumps of vorticity shed by the grid are swept
downstream, they start to twist, turn, and stretch as a result of their
self-induced velocity field. Moreover, this occurs at large Re, so that
the vortex lines are more or less frozen into the fluid. A casual glance
at a turbulent cloud of smoke, say that of a cigarette, is enough to
convince most observers that a chaotic, turbulent velocity field con-
tinually teases out any frozen-in’ marker, and this is also true of
vorticity. As this mixing proceeds, sheets and tubes of vorticity
are continually teased out into finer and finer structures, like a chef
preparing filou pastry. This process continues until the tubes or sheets



Exercises

are thin enough for diffusion to set in, that is, we have reached the
Kolmogorov microscales. So we might imagine that much of the
vorticity in fully developed turbulence is teased out into extremely
fine filaments and indeed this is consistent with the measured flatness
factors for (Av)®. Moreover we would expect the measurements of
intermittency, and hence of 9, to become more pronounced as Re is
increased, since the cut-off scale, #, shrinks as Re grows. Again, this is
consistent with the measurements.

Let us summarize our findings. The probability distribution of u, at
a single point is approximately normal, whereas the probability dis-
tribution of the difference in velocity between two neighbouring
points is decidedly non-Gaussian, although departures from a normal
distribution become less and less marked as r becomes large. This is
hardly surprising. The value of u, at a particular point is determined
largely by chance, but the difference between u, at two adjacent points
is determined to a large extent by local dynamical considerations (the
Navier-Stokes equations) and not by chance. For example, if the two
points lie in the same eddy then the relationship between (u,)s — (i,)p
is determined by the dynamical behaviour of that eddy. Moreover, the
fact that S is non-zero and negative is not a coincidence. We shall see
in Chapter 5 that, in the inertial subrange,

<[AV]3> A

(IR s

where f is Kolmogorov’s constant. Given that § ~ 2, this predicts that

(3.29)

S~ —0.3, in line with the measurements. Thus Av is necessarily non-
Gaussian. We take up this story again in Chapter 5.

Exercises

3.1 Confirm that the two-cycle shown in Figure 3.1 is given by
x=lat1+{(a+1)(a—3)}"]/2a

3.2 Confirm that the fixed point X = (a — 1)/a of the logistic equation (3.1) is
stable for a <3 and unstable for a > 3. [Hint: look at what happens when
Xo =X+ 0x, ox <€ X.]

3.3 Confirm that the two-cycdle shown in Figure 3.1 is stable for
3 < a < 1-++/6. [Hint: consider the stability of the so-called second-genera-
tion map x, 4 , = F(F(x,,)).]

3.4 Consider the system of differential equations,

dx
7= ey
d
Z—xt (a2 )y
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It has a steady solution x=(x,y)=(0,0). Show that the steady solution is
linearly stable if < 0 and unstable if a > 0. Confirm that * = |x|” satisfies the
Landau equation and find its solution. Now show that x undergoes a super-
critical Hopf bifurcation at a = 0.

3.5 When we add the next term in the expansion of |A|* to the Landau
equation we obtain

dlaf*

= 20]A1* — olA]* — BlAI°.
- = 20]4f —alal’ — i

On the assumption that o < 0 and > 0 find the upper stability curve shown
in Figure 3.2(b).

3.6 Use the integral form of the momentum equation (2.14) to show that the
pressure rise in a sudden pipe expansion is

Ap=p, —p1 = pV2 (VL — V2)

where V, and V, are the mean velocities upstream and downstream of the
expansion. [Hint: use the control volume shown in Figure 3.7.] You may
ignore the shear stress acting on the boundary and take the time-averaged
pressure on the shoulder of the expansion to be uniform and equal to the
upstream pressure p;. Now use the time-averaged energy equation (2.16) to
show that, for the control volume in Figure 3.7,

o2/ -+ V2/2) ~ (/o + V2/2)] =~ [ av

where  is the mass flow rate, pA,V, = pA,V,, and ¢ is the dissipation per unit
mass, & = Zl/Sfj. As before you may ignore the shear stresses acting on the
boundary. Also, you may assume that the kinetic energy of the turbulence
well upstream and downstream of the expansion is small by comparison with
the kinetic energy of the mean flow, V7/2 and V?/2. Now confirm that the
average dissipation per unit mass in the control volume is

]}

— % AR

where L is the length of the control volume. This is the rate at which energy is
extracted from the mean flow and passed onto the turbulence. Note that it is
independent of v.

3.7 Use Kolmogorov-like arguments to find the form of {(Av)’) in the
inertial subrange and hence show that the skewness factor S should be con-
stant throughout the inertial subrange.

Suggested reading
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homogeneous turbulence. Kolmogorov’s theory of a universal equilibrium
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CHAPTER 4

Turbulent shear flows and simple
closure models

Finally we should not altogether neglect the possibility that there
is no such thing as ‘turbulence’. That is to say, it is not mean-
ingful to talk of the properties of a turbulent flow independently
of the physical situation in which it arises. In searching for a
theory of turbulence, perhaps we are looking for a chimera. ...
Perhaps there is no real turbulence problem’, but a large
number of turbulent flows and our problem is the self-imposed
and possibly impossible task of fitting many phenomena into the
Procrustean bed of a universal turbulence theory. Individual
flows should then be treated on their merits and it should not
necessarily be assumed that ideas valid for one flow situation
will transfer to others. The turbulence problem may then be no
more than one of cataloguing. The evidence is against such an
extreme point of view as many universal features seem to exist,
but nevertheless cataloguing and classifying may be a more
useful approach than we care to admit.

P.G. Saffman (1977)

We now turn to two subjects of great practical importance: (i) ele-
mentary ‘models’ of turbulence; and (ii) shear flows. By shear flows
we mean flows in which the mean velocity is predominantly one-
dimensional in nature, such as wakes, boundary layers, submerged
jets, and pipe flows (Figure 4.1). Traditionally, many of the early
studies of turbulence focused on such flows and there were some
notable successes, such as the celebrated log-law of the wall. More-
over, many of the early ‘models’ of turbulence, which are still used
today, were developed in the context of turbulent shear flows." It is
natural, therefore, to group these topics together.

Although there have been many successes in our attempt to
understand shear flows, it would be misleading to suggest that there
exists anything like a coherent theory. Rather, we have a hierarchy of

! Closure models used in the context of shear flows are called ‘single-point closures’
since they work with statistical quantities defined at a single point in space. Later, when
we discuss homogeneous turbulence, we shall meet so-called ‘two-point closures’, which
work with statistical quantities defined at two distinct points. Two-point closure models
are generally too complex to be applied to inhomogeneous flows, although some small
advances have been made in this direction.
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Figure 4.1
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Different types of shear flows.

models of varying complexity, most of which are semi-empirical in
nature. Perhaps, in view of Saffman’s diagnosis, this should not come
as a surprise. While certain unifying features exist, each class of flow
seems to exhibit its own idiosyncratic behaviour. This is not good
news for anyone who places their faith in the existence of universal
turbulence closure models.

The flows shown above have a number of obvious common fea-
tures. Perhaps the most striking of these is the fact that, in the external
flows, there is a sharp interface between the turbulent and non-
turbulent motion. Recall that we define turbulence as a spatially
complex vorticity field which advects itself in a chaotic manner. In the
external shear flows shown above this vorticity is generated on a solid
surface, such as the inside surface of the nozzle, or the surface of the
cylinder. Tt then spills out into the bulk flow where it is swept
downstream. The sharp interface between the turbulent and non-
turbulent fluid simply reflects the fact that, at high-Re, the vorticity is
virtually frozen into the fluid, rather like a non-diffusive dye. The sort
of questions we might pose are:

e how rapidly does the turbulence (vorticity) spread as it is swept
downstream?

e how intense is the turbulence at different locations?

e what is the spatial distribution of the mean velocity?

By and large, we shall restrict ourselves to statistically steady flows,
so that ensemble averages, ((~)), are equivalent to time-averages,
(~). Since the latter are easier to understand we shall use time-
averages throughout the chapter. As before, we take u and u' to

represent the mean and fluctuating components of motion.



The exchange of energy between the mean flow and the turbulence

4.1 The exchange of energy between the mean
flow and the turbulence

Observe the motion of the surface of water, which resembles the behaviour of
hair, which has two motions, of which one depends on the weight of the strands,
the other on the line of its revolving; thus water makes revolving eddies, one
part of which depends upon the impetus of the principle current, and the other
depends on the incident and reflected motions. (Leonardo da Vinci 1513)

(Did Leonardo da Vinci foresee Reynolds’ idea of dividing a turbulent
flow into two components: a mean velocity and the turbulent

fluctuations?)

One of the earliest concepts in turbulence is the idea of an
eddy viscosity. In brief, this simply asserts that, as far as the mean flow
is concerned, the net effect of the turbulence is to augment the
laminar viscosity and replace it with a larger ‘eddy viscosity’. This
concept has had a grand tradition, starting with Saint-Venant and
Boussinesq in the mid-nineteenth century, and culminating in
Prandtl’s 1925 mixing-length theory. These ideas may seem rather
crude by modern standards, but they have had an enormous impact
on the way in which engineers estimate the gross properties of tur-
bulent flows. Many ‘engineering models’ of turbulence are eddy-
viscosity models. These models are simple to use and often they work
surprisingly well. On the other hand, sometimes they go badly wrong!
Evidently, the discerning engineer must acquire some appreciation of
the limitations of the eddy-viscosity concept.

In this section we review the early theories of Boussinesq and
Prandt]l and then give a brief introduction to their modern descen-
dants, such as the so-called k—¢ model. There is a significant change of
emphasis between this section and the previous chapter. Up until now
we have been concerned with the fundamental nature of turbulence
itself. Any mean flow present simply acted as a mechanism for initiat-
ing the turbulence; thereafter it played little or no role. In shear flows,
however, there is a complex and continual interaction between the
turbulence and the mean flow; the mean flow generates, maintains,
and redistributes the turbulence, while the turbulence acts back on the
mean flow, shaping the mean velocity distribution. (Think of pipe
flow; the mean flow continually generates turbulence, while the tur-
bulence itself shapes the mean velocity profile.) In eddy-viscosity
models the emphasis is on the second of these processes. We are
interested in the turbulence only to the extent that it influences the
mean flow, and the objective of an eddy-viscosity model is to try and
parameterize this influence. Of course, this inevitably leads us back to
the reverse problem, that of the generation of turbulence by the mean
flow, since any eddy-viscosity model requires some knowledge of the
local intensity of the turbulence.
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As we shall see, the mean flow and the turbulence interact via a
quantity called the Reynolds stress. This stress arises as a result of the
turbulence and acts on the mean flow, shaping its evolution. It is also
responsible for the maintenance of the turbulent fluctuations as it
channels energy out of the mean flow and into the turbulence. We
start, therefore, by introducing the idea of the Reynolds stress and
some of its consequences.

4.1.1 Reynolds stresses and the closure problem of
turbulence

Consider the Navier-Stokes equation (2.6) applied to a steady on-
average flow

Ou; _  Op Oty
P +pla-Viu = Ix, + o (4.1)
where
8m Ou;
Ty = 2pUSy = pv {6 8xj (4.2)

Here 7;; represents the stresses (tangential and normal) associated with
viscosity. We now time-average the Navier-Stokes equation. This

yields®
af’ a?ij
\Y% -V = ——+=—
pl@ 9+ ] = SR
which may be rearranged to give
op 0 —
p(a- V)i = —%+ = [11] pugu;] . (4.3)

Xj

This gives us an equation for the mean quantities u and p, just as we
would have expected. However, the quadratic (non-linear) term in
(4.1) has given rise to a contribution to (4.3) involving turbulent
quantities, pu;u;. This couples the mean flow to the turbulence. It is as
1f the turbulent fluctuations have given rise to additional stresses,
— pu !. These are the all-important Reynolds stresses and we can
rewrlte (4.3) as
pla- V)i = — gi + ai 7+ ). (4.4)

Xj

We might note in passing that we can also time-average the continuity
equation, and this yields

V.-u=0, V-u=0 (4.52,b)

so that both u and u’ are solenoidal.

? Contributions of the form (- V)u' and (v’ - V)i vanish when time-averaged.
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Figure 4.2 Momentum fluxes out of a cube.

The exchange of energy between the mean flow and the turbulence

We can understand the physical origin of the Reynolds stresses as
follows. Let us rewrite (4.1) in integral form:

d
dt Jy s s s

In words this states that the rate of change of momentum in the fixed

volume V is equal to the sum of:

(1) minus the rate at which momentum flows out through the
surface S;
(2) the net force arising from pressure and viscous forces acting on S.

If we now time-average this expression, noting that u =u+u/,
we find,

d _ N _ — _
E/(pui)dV = %(pu{)u - dS + j{ (’Eij — pu{uj) ds; — %pdSi.
v s s s
(4.6)

We have new terms, —pu;u;, which appear to act like stresses but really
represent the flux of momentum in or out of V caused by the tur-
bulent fluctuations. For example, if V is a small cube, dx dy dz, and we
focus on the x-component of momentum, then the momentum fluxes
through the sides of the cube which contribute to the rate of change of
(puy)dV are of the form (Figure 4.2),

p (i +ul) (i +u.)dydz, (through the dydz faces)
p(ﬂx + u;) (ﬁy + u;) 0z0x, (through the 4z dx faces)
p (e + 1) (ﬂz + u.)0x dy, (through the dx dy faces)

and when these are time-averaged the turbulence gives rise to the
momentum fluxes,

p () Sy bz, p(u—uy) 5z0x,  p(ulul)ox dy.

These are the Reynolds stresses which appear in the time-averaged
equation of motion. The important point to note, however, is that ‘55
is not really a true stress in the conventional sense of the word.
Rather, it represents the mean momentum fluxes induced by the
turbulence. It just so happens that, as far as the mean flow is con-
cerned, we can capture the effects of these fluxes by pretending that ‘cg
is a stress.

Returning now to (4.4), it is clear that if we are to predict the
behaviour of the mean flow we need to know something about the
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Reynolds stresses. Let us see if we can get an equation for 15.. If we
subtract (4.3) from (4.1) then we obtain an equation of the form,
ou, ou, 0w, 0u

e 3 e 3 —Lt — (~). 4.7
+ " Jrukan (~) (4.7a)

We have a similar equation for u]':

ou’ ou’ i o
T R R L BN I

_+u_+u—+u—: ~), 47b

ot , 8xk k 8xk k axk ( ) ( )
We now multiply (4.7a) by u]', and (4.7b) by u, add the resulting
equations and time-average the result. After a little algebra we arrive
at an important equation which we will have reason to revisit time
and again,

— —_ O o, 0 [ ———
— [puzujf] =u- V(pu{uf) =1 a—xi + ‘Eﬁe o + o [—pu{uju{e]

d v d 7 wra
ox 7] - 5 P 127,

+vV?2 {pruj’} —2vp|—

(4.8)

This is a bit complicated, but for the moment the main point to note is

that our equation for rf} involves new quantities of the form w{uju,.
We might then search for an equation for the triple correlations and

indeed this can be readily found. Unfortunately it is of the form

p— S B —
= () = - 9 (o) = 5 | i, | + (~).
X

So now we have yet another set of unknowns: uujuu, . Of course,
the governing equation for these involves fifth-order correlations, and
so it goes on. The key point is that we always have more unknowns
than equations. This is the closure problem of turbulence introduced in
Chapter 1.

So we have paid a heavy price in moving to a statistical description
of turbulence. We started out with a perfectly deterministic equa-
tion—the Navier-Stokes equation—and ended up with an under-
determined system. There is an irony here. If we take a non-statistical
approach then we have a governing equation which is deterministic,
yet the variable it predicts, u, behaves in a chaotic fashion. On the
other hand, if we take a statistical approach, then the quantities we are
interested in, Tu]’ etc., are non-random and perfectly reproducible in
any experiment, yet we cannot find a closed set of equations which

describes them!
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The closure problem has profound ramifications. It is impossible to
develop a predictive, statistical model of turbulence simply by
manipulating the equations of motion. To close the system we need to
introduce some additional information, and this information is
necessarily ad hoc in nature. For almost a century, engineers have
plugged this gap using the eddy-viscosity hypothesis and, indeed, this
still forms the backbone many engineering models of turbulence.

Example 4.1 Derive equation (4.8) from first principles.

Example 4.2 Show that, by setting i=j in (4.8), we obtain the
energy equation

o’

8xfr+v‘ [—WJWVEPW]
7

~ Loy,

u-V [%PW} = T3S — PV[

Example 4.3 Confirm that the viscous terms in (4.8) can also be

rewritten as

! !

0 {— —
[ [

— (T +va-:| — T, —
sk T Tk *ox,  * O

axk

and that, when i =}, they reduce to,

0 I
2 [— u{r{k] — ZpVSQkSQk} .
8xk

Hence show that the energy equation of Example 4.2 can be

rewritten as,

Dr. — — _ —
= [tp)| =u- V3o ()] = 55— 20155,

+V- [—p’_uur ujth, —%p(u’)zu’] .

4.1.2  The eddy-viscosity theories of Boussinesq and Prandtl

The first attempt to develop a ‘turbulence model probably dates back
to Boussinesq’s work in the 1870s. He proposed a shear-stress strain-

rate relationship for time-averaged flows of a one-dimensional nature
of the form,
Ol

Ty + T = p(v +14) By (4.9)
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where v, is an eddy viscosity. The general idea behind (4.9) is that the
effect of the turbulent mixing of momentum, as characterized by ‘Ciy,
is analogous to the molecular transport of momentum, which leads to
the laminar stress 7,,. Thus we might imagine that the role of tur-
bulence is to bump up the effective viscosity from v to v + v, where
v, is, presumably, much greater than v.

The concept of an eddy viscosity is now commonly used for flows
of arbitrary complexity and the three-dimensional generalization of
(4.9) is,

_ gu O] p—
o ] = pu |+ 50| S, (4.10)
J 1

The additional term on the right is necessary to ensure that the sum of
the normal stresses adds up to —p(u!)*. We shall refer to (4.10) as
Boussinesq’s equation.

Of course, the question now is: what is v/,? Evidently it is a property
of the turbulence and not of the fluid. Prandtl was the first to propose
a means of estimating v, known as the mixing-length model. He was
struck by the success of the kinetic theory of gases in predicting the
macroscopic property of viscosity. In fact this theory predicts,

v=:lv (4.11a)

where [ is the mean free-path length of the molecules and V their rms
speed. Prandt]l noted that there was an analogy between Newton’s law
of viscosity and the Reynolds stress. In a laminar flow, layers of fluid
which slide over each other experience a mutual drag (per unit area),
T,y, because molecules bounce around between the layers exchanging
momentum as they do so. This is illustrated in Figure 4.3(a).
A molecule in the slow moving layer, A, may move up to B, slowing
down the faster moving fluid. Conversely a molecule moving from C
to D will tend to speed up the slower fluid. When these molecular

processes are averaged out we obtain the macroscopic equation

O
3 9y

Prandt] noted that a similar thing happens in a one-dimensional tur-
bulent flow, only instead of thinking about thermally agitated mole-
cules bouncing around, we must think of lumps of fluid being thrown
around and jostled by the turbulence. Thus we can re-interpret Figure
4.3(a) as balls of fluid being thrown from one layer to another,
carrying their momentum with them. The momentum exchange
resulting from this process leads, when averaged over time, to the
Reynolds stress ’ny = —p@. This analogy between molecular and



Figure 4.3 (a) Time-averaged flow
corresponding to (4.9). (b) Prandtl’s mixing-
length theory. (¢) The choice of mixing
length in different geometries.
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macroscopic processes led Prandtl to suggest that the macroscopic
equivalent of (4.11a) is

vy = InVr (4.11b)

where 1, is called the mixing length and Vi is a suitable measure of
[u’|. (This is consistent with the notion that the more energetic the
turbulence, the greater the momentum exchange, and hence the
greater is v;.) Of course (4.11b) is really just a dimensional necessity
and merely transfers the problem from one of determining v, to one of
determining l,, and V. Prandtl’s mixing-length theory estimates these
quantities as follows.

Consider a mean flow u,(y) as shown in Figure 4.3(b). The fluid at
y, which has mean velocity u,(y) will, on average, have come from
levels y 41 where [ is some measure of the large eddies in the flow.
Suppose that a fluid lump is thrown from y+1 to y, and it retains its
linear momentum in the process, then on average it arrives at y with a
velocity of #,(y + ). So if I is small by comparison with d,/0, then
the spread of velocities at y will be

Oy

15
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and by implication
[ ()] ~ 10/ Dy

Next we note that, when i, /0, > 0, there is likely to be a negative
correlation between , and u; at y. That is, a positive u, is consistent
with fluid coming from y-+1, which requires a negative u;. Con-

/
versely, u,

and u; are likely to have a positive correlation if
Ot /Oy < 0. Moreover, we expect [u | ~ |u)| and so, whatever the

sign of Ou,/dy, we have the estimate

Oty | Ot
wl ~ ()~ a—"y a—“y. (4.12)

We now absorb the unknown constant in (4.12) into the definition of
[ and we find that, for this simple one-dimensional shear flow,

—_ Oy | O
R _ — o |22 =
Ty = —pu, = ply |y (4.13a)
If we compare this with the Boussinesq equation
Oty
Ly T PG
we have,
Dt
v =101 T (4.13b)
Oy

This is Prandtl’s mixing-length model. If we can determine [,,, say by
experiment, then we can find ’Cf:y. It has to be said, however, that this
is a deeply flawed argument. The use of a Taylor expansion is not
justified in estimating #,(y + 1) — #.(y) since I, the size of the large
eddies, is usually comparable with the mean gradient in #,. Moreover,
there is no justification for assuming that the lumps of fluid retain
their linear momentum as they move between layers, suddenly giving
up their momentum on arrival at a new layer.

Nevertheless, it seems that Prandtl’s mixing-length model works
reasonably well (at least better than might be expected) for simple
one-dimensional shear flows, provided, of course, that l,, is chosen
appropriately. For free shear layers it is found that [, is reasonably
uniform and of the order of I, = cd, where ¢ is the local thickness of
the layer. The constant ¢ depends on the type of shear layer (mixing
layer, wake, jet, etc.). In boundary layers one finds that, near the wall,
., = Ky, where Kk &~ 0.4 is known as Karman’s constant (Figure 4.3(c)).
This is often interpreted as the eddy size being proportional to the
distance from the wall.
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One defect of (4.13), however, is that it predicts that v, =0 on the
centre-line of a jet or wake, something which is unlikely to be true in
practice. However, this deficiency can be corrected for by adopting a
slightly different expression for v, as discussed in Section 4.3.1.

We shall return to the idea of a mixing length in Section 4.1.4 of this
chapter, where we shall show that, for one-dimensional shear flows,
the main results of mixing length really just follow from the laws of
vortex dynamics. In the mean time we shall examine the process by
which the mean flow and the turbulence exchange energy.

4.1.3  The transfer of energy from the mean flow
to the turbulence

So far we have focused on the influence of ‘55 on the mean flow. We
now show that the Reynolds stresses also act as a conduit for trans-
ferring energy from the mean flow to the turbulence, maintaining the
turbulence in the face of viscous dissipation. Our first port of call,
therefore, is to examine the rate of working of 'ES.

In Chapter 2 Section 2.1.4 we saw that the rate of working of the
viscous stresses in a laminar flow is equal to d(t;u,)/ 0x;. We found it
convenient to split this into two parts,

a% [tym] = -g—z + rljg—: = ufi + 748y (4.14a)
where f; is the net viscous force per unit volume acting on the fluid.
We interpret this equation as follows. The two terms on the right
both represent rates of increase of energy per unit volume of the fluid.
The first term, u;f;, represents the rate of increase of mechanical
energy of the fluid, that is, the rate of working of f;. The second term
gives the rate of increase of internal energy. Together, they account
for the total rate of working of 7;;. Similarly, in a turbulent flow, the
rate of working of '55 on the mean flow is

] oy
e [Tf}%} = 6—; + rf}&-j. (4.14b)

7 7

However, there is an important difference between (4.14a and b). The
Reynolds stress is entirely fictitious, arising from our averaging pro-
cedure, and so it cannot create or destroy mechanical energy. Thus
‘E?Ej cannot represent the rate of change of internal energy in the
fluid. Rather, we shall see that it represents the rate of generation of
turbulent kinetic energy.

Now suppose we integrate (4.14b) over a closed volume, V.
The term on the left is a divergence and integrates to zero since T

i
vanishes on the boundary. In a global sense, therefore, the two terms
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Figure 4.4 Turbulent flow in a pipe.
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on the right of (4.14b) must balance:

/ il av / RSydV
71"1 — Ti' i .
v axj v ! !

But 8(15) /Ox; is the net force per unit volume acting on the mean

flow by virtue of the Reynolds stresses, and so ma(rg) /Ox; is the rate
of working of this force. We would expect, therefore, that
—aia(rﬁ}) /Ox; represents the rate of loss of mechanical energy from
the mean flow as a result of the action of the Reynolds stresses, that is,
as a result of the turbulence. (We shall see shortly that this is so.) Since
Tf} cannot create or destroy mechanical energy, we might anticipate
that this mean-flow energy will reappear as kinetic energy in the
turbulence, corresponding to the term ‘ngij in (4.14b):

f i av / A
71"1_ y Ti' ii
v 0x; y

(rate of loss of KE from = (rate of gain of KE
the mean flow) by the turbulence).

We shall now show that this is indeed the case.
To focus thoughts, let us consider a particularly simple flow, say a
steady-on-average pipe flow. (Figure 4.4). Then (4.3) tells us that,
I A T
p(u- V) = — =—+—=+ (viscous forces). (4.15)
Ox;  Ox
The Reynolds stress gives rise to a net force acting on the mean flow,
fi= 8(15)/39@. It turns out that the rate of working of this force, fiu;,
is negative in a pipe and so the mean flow loses energy to the agent
which supplies the force, that is, to the turbulence. We talk of energy
being transferred from the mean axial flow to the turbulence. This is
why the turbulence in a pipe does not die away.
Of course this is all a little artificial. We have only one flow and one
fluid. What we really mean is that we can divide Ju® into two parts,

1(u)* and 1 (u')*, and that there is a net transfer of energy from 1@ to
1(u')* when fiu; is negative. Now we know that the turbulence in the
pipe does not die away (when the viscous forces are small) and so,
by inference, fiu; must be negative. You might ask why this should be
so. How does the turbulence extract energy from the mean flow?
What is really happening is that turbulent eddies are continually being
created and intensified through a distortion of the mean flow. This
takes the form of warping or wrinkling of the vortex lines (they get
punched out of shape by the turbulence) accompanied by a continual
stretching and intensification of the turbulent vortices. The end result

is a net transfer of energy from u to u’.
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Now we can use (4.14b) to rewrite fiu; as
W= TS 0 Iy 16

The second term on the right is a divergence and, as we have seen, it
integrates to zero in a closed domain. The first term, 7;, Slj, turns out to
be the local rate of acquisition of kinetic energy by the turbulence as a
result of Tf} (see Example 4.4). This is called the deformation work (or
the turbulent energy generation) and it represents the tendency for the
mean shear to stretch and intensify the turbulent vorticity, leading to
an increase in turbulent energy.

Equation (4.16) tells us that —fju; and ‘Ef}gij always balance in a
global sense, so that any kinetic energy removed from the mean flow
must end up as kinetic energy in the turbulence. However, they need
not balance locally because the divergence term on the right of (4.16),
which represents a flux of energy, can be non-zero. Thus, the energy
removed from the mean motion by Tf} at one point need not turn up
as turbulent kinetic energy at exactly the same location. The reason
for this is subtle and is related to the cross term pu - v/, as illustrated in
Example 4.4.

Example 4.4 Let us write the equation of motion for the steady-
on-average pipe flow as,

2 (pu) +u- ow) = YO

where > F represents the sum of the pressure and viscous forces.
From this we have the kinetic energy equation

g(pu2/2)+u V(pu?/2) = ZF u.

Show that, when time-averaged, this yields

a-Vv (pﬁz J2+p(u')? /2) +u'-V(pw)*/2) _6% [ﬁﬂf}] +Zﬂ.
This tells us that the transport of total kinetic energy by the mean
velocity, plus the transport of turbulent kinetic energy by the turbu-
lence, is equal to the rate of working of the Reynolds stresses plus the
mean rate of working of the pressure and viscous forces. As antici-
pated above, (9(1@‘55) /Ox; acts as a source of both mean flow and
turbulent kinetic energy. Now show that, by first time-averaging the

equation of motion, we obtain

, _ O -
V(pu®/2) :uia—ijrZEHu
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Figure 4.5 A mean shear teases out the
vortex tubes in the turbulence. The kinetic
energy of the turbulence rises as the tubes are
stretched.
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Subtracting the two energy equations yields

i v(pW/z) V(W) /2) =S+ Y Fu- Y Fu

Thus the two contributions to 9(wty;)/0x;, namely u;0ty;/Ox; and
RT
Tij EN
lence respectively. Note that, although these two terms balance

act as sources of kinetic energy for the mean flow and turbu-

globally, they need not balance locally, the difference being
6@15.) /Ox;. Show that this difference arises from the turbulent
transport of the cross term pu - u'. O

An important corollary to our interpretation of ngij is that, in the
absence of body forces such as buoyancy, we need a finite rate of
strain in the mean flow to keep the turbulence alive. The need for a
finite strain, and the mechanism of energy transfer from the mean
flow to the turbulence, can be pictured as follows. We might visualize
the turbulent vorticity as a tangle of vortex tubes, rather like a see-
thing mass of spaghetti. In the presence of a mean shear these tubes
will be systematically elongated along the direction of maximum
positive strain. As they are stretched their kinetic energy rises and this
represents an exchange of energy from the mean flow to the
turbulence (Figure 4.5). (Actually this is a little simplistic as some of
the vorticity resides in sheets rather than tubes, but it does get the
general idea across. We shall refine this picture in Chapter 5.)

Let us take this idea of a transfer of energy a little further. We can
derive an equation for the kinetic energy of the mean flow from (4.15).
Multiplying this by #; and rearranging terms yields,

D1 _ 1 0 o
e (7P%) =0 V(Zp0) = o= [ inp + e (Ta + 74|

- Tﬁgik — 2pvSy Sy,

(4.17)

(rate of change of KE) = (flux of KE) — (loss of KE to turbulence)
— (dissipation)

where Tj; is the mean value of the viscous stresses,

We recognize the divergence on the right as representing the rate of
working of the pressure, viscous and Reynolds stresses on the
boundary of the domain of interest. For flow in a closed domain this
term integrates to zero. The last two terms on the right represent:
(i) the rate of transfer of energy to the turbulence; and (ii) the rate of
destruction of mean energy by the mean viscous forces. The last
term on the right is almost always negligible (except very close to

boundaries).
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We now turn to the turbulence itself. We can get an equation for
the kinetic energy of the turbulence from (4.8). Setting i =j in this
expression yields’

. o — -
WV [Sp(u)| = o [+ Ty~ howadag] + 7S 20088,

(4.18)

(material rate of change of KE) = (flux or transport of KE)
+ (generation of KE)

— (dissipation).

Note that 73Sy, which transfers energy from the mean flow to the
turbulence, appears in both (4.17) and (4.18), but with an opposite sign.

Now 5 Sy represents the rate at which energy enters the turbu-
lence and passes down the energy cascade. We represent this quantity
by pG. Also, we recognize the last term in (4.18) as the rate of dis-
sipation of turbulent energy by the fluctuating viscous stresses. We
denote this by pe. So we have

Generation: G — —ull-u; 51] (4.19)
Dissipation: & = 2US;S};. (4.20)

It is convenient to introduce one more label;

. 1 I 7,7 gl
Transport . pT1 — zpuiujuj + P u; — Zplju]sy
So our turbulence kinetic energy equation becomes,

ﬁ‘VBGE?::*V~HP+G*E- (4.21)

When the turbulence is statistically homogeneous (which it never is
near a wall) the divergences of all statistical quantities vanish and
(4.21) reduces to

G=z¢

which states that the local rate of generation of turbulence energy is
equal to the rate of viscous dissipation. In Chapter 3 we introduced the
additional quantity II to represent the flux of energy down the tur-
bulent energy cascade, from the large to the small eddies. If there is a
continual depletion or accumulation of energy at some particular size

range within the cascade then Il may vary in magnitude as we pass

? See Example 4.3.
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Table 4.1 Wind-tunnel data for the
asymptotic state of one-dimensional

homogeneous turbulence. Note that u

is defined through u® = 1 (u/ )

R 2 ~
T/ pu 0.42
Su’/e ~4.2
G/e ~1.7
e/’ /) ~1.1
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down the cascade. However, in steady, homogeneous turbulence I1 is
the same at all points in the cascade and we have,

G=1Il=¢
(KE into cascade) = (flux down cascade) = (dissipation at small scales).
Moreover, in Chapter 3 we saw that the large eddies in a turbulent

flow tend to break up on a timescale of their turn-over time and so
IT ~u?/1 where u? ~ (u')* and [ is the integral scale (the size of the

large eddies). So for steady, homogeneous turbulence we have

G=Il=e~u/l
(homogeneous, steady).

However, shear flows are rarely homogeneous, and even if they are,
there is no guarantee that they are steady. For example, the one-
dimensional shear flow u = u,(y)é,, Ou,/dy = S = constant, tends
to evolve towards an unsteady state in which the production of
energy, ‘Cf}gij, exceeds the dissipation, pée. In fact, wind-tunnel data
suggests that G/e~ 1.7 where G = 'cf?yS/ p (Champagne, Harris and
Corrsin 1970; Tavoularis and Corrsin 1981). (See Section 4.4 or else
Table 4.1.) Nevertheless, even when the turbulence is unsteady or
even inhomogeneous, G, I1, and & often tend to be of the same order
of magnitude, so that frequently

GrIll~en~d/l
(inhomogeneous, unsteady)

The main exception to this rule is freely decaying turbulence in which
G = 0 but nevertheless ¢ ~ 1~ #’/1, as discussed in Chapter 3.

4.1.4 A glimpse at the k—& model

We now turn our attention to ‘engineering models of turbulence’
which, by and large, are eddy-viscosity models. We start by re-
examining Prandtl’s mixing-length theory and then move on to one of
the most popular models currently in use: the k—¢ model. Recall that
Prandtl’s mixing-length model applied to a simple, one-dimensional
flow predicts,

Oty

dy

% _ y% (4.22)

R _ 12
‘nyiplm

We noted that there are several unjustified steps in the derivation of
(4.22), but, nevertheless, it seems to work reasonably well provided its
use is restricted to simple shear layers in which there is only one
characteristic length scale. So why does it work at all? The answer is

vortex dynamics. Sometimes for convenience we pretend that there



Figure 4.6 Hairpin vortices generated in a
boundary layer.
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are two flows—a mean flow and a turbulent flow—but of course this
is fiction. There is only one vorticity field, and the mean and turbulent
flows are simply different manifestations of this field. The vorticity
associated with the mean flow points out of the x—y plane,
@ = (0,0,@,), and that associated with the turbulence is random, but
at any instant the real vorticity field is the sum of the two. So typically
the vorticity of the large eddies and that of the mean flow are of the
same order of magnitude, since they are just different manifestations
of the same vortex lines. There is a simple (perhaps too simple) car-
toon which gets this idea over. We might picture the z-directed vortex
lines being continuously teased out into three-dimensional shapes by
turbulent fluctuations. The eddies created by this process have a
vorticity which is of the same order of magnitude as the vorticity of
the mean flow (Figure 4.6). In any event, if u is a typical measure of
[u’| and [ the size of the large, energy-containing, eddies, then

w/l~w, ~ (4.23)

Now in turbulent shear flows % and u; are strongly correlated for the
reasons discussed in Section 4.1.2 of this chapter. Moreover, 1 and u;
are of the same order of magnitude. It follows that

— 2
~ut o~ (%—L;‘) (4.24)

and Prandtl’s mixing-length theory follows. The key point, though, is

!t
uxuy

that Prandtl’s mixing-length approach is unlikely to yield useful results
in anything other than a simple shear flow.

Since mixing length is really restricted to one-dimensional shear
flows, we need some more robust model for flows of greater com-
plexity. Traditionally, engineers have fallen back on the Boussinesq—
Prandt] equations

Ty = 2p1iSy — (p/3) () 0y (4.25)
Vi = lVT. (4.26)
The idea behind (4.25) is that momentum is exchanged through

eddying motion in a manner analogous to the microscopic transport
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of momentum by molecular action. Unfortunately this is a flawed
concept because turbulent eddies are distributed entities which con-
tinually interact, whereas molecules are discrete and collide only
intermittently. Moreover, the mean-free path length of the molecules
is small by comparison with the macroscopic dimensions of the flow.
This is not true of the meandering of turbulent eddies. Indeed, the
large, energy containing eddies often have a size comparable with the
characteristic scale of the mean flow.

Given that the molecular and turbulent transports of momentum
are qualitatively different, we need an alternative means of justifying
the eddy-viscosity hypothesis. One argument is to suggest that (4.25)
merely defines v, while (4.26) is simply a dimensional necessity. (We
have not yet specified V;.) However this argument is also inadequate.
In fact there are three major shortcomings of the eddy-viscosity
hypothesis. First, we have chosen to relate 'Ef} and S via a simple
scalar, 14, rather than through a tensor. Thus, for example, the rela-
tionship between ‘Ciy and §xy is the same as between ‘E;{Z and §yz and
so on. This suggests that eddy-viscosity models will not work well
when the turbulence is strongly anisotropic, as would be the case
where stratification or rotation is important. Second, when S; =0
(4.25) predicts that the turbulence is isotropic, with ((u.)?) =
((u;)2> = ((u;)z> Yet we know from studies of grid turbulence that
anisotropy can persist for long periods of time, with or without a
mean shear (see Section 4.6.1). Third (4.25) assumes that ’CS- is deter-
mined by the local strain rate, and not by the history of the straining of
the turbulence. It is easy to see why this is not, in general, a valid
assumption. The point is that the magnitude of the Reynolds stresses
depends on the shapes and intensity of the local eddies (blobs of
vorticity), and this, in turn, depends on the straining of the eddies
prior to arriving at the point of interest. In short, we are not at liberty
to assume that the turbulent eddies have relaxed to some sort of
statistical equilibrium, governed by local conditions alone. All in all it
would seem that there are a host of reasons for not believing in (4.25),
many of which will come back to haunt us. Nevertheless, with these
limitations in mind, let us proceed.

The question now is: what is 12 It seems natural to take Vy as k'/?
where k = 2 (F).4 The idea is that the more energetic the turbulence
the greater the momentum exchange and hence the larger the value of
v,. Also, on physical grounds, we would expect [ to be of the order of
the integral scale since only the large eddies contribution to the

momentum exchange. So we have,
v ~ k2L (4.27)

* Unfortunately, it has become conventional to use k for both wave number and
turbulent kinetic energy. This rarely leads to confusion, however.
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The problem now is that we need to be able to estimate k and [ at each
point in the flow. The so-called k—& model tackles this as follows. Recall
that, in most forms of turbulence, ¢~#’/1. It follows that, if we
believe (4.27), then

v, ~ k* /.
In the k—¢ model this is usually written as
v = cuk’ /e (4.28)

where the coefficient ¢, is given a value of ~0.09. (This value is
chosen to conform to the observed relationship between shear stress
and velocity gradient in a simple boundary layer. See Section 4.2.3.)
The model then provides empirical transport equations for both kand &.
The k equation is based on (4.18), which generalizes to

Ok

o T VIR = V(1] (1), (4.29)

pT = Zpu1 ] TPl — 2pvuS;;

for unsteady flows. (We assume here that the timescale for changes in
statistically averaged quantities is slow by comparison with the
timescale for turbulent fluctuations, so that an averaging procedure
based on time may be retained even in unsteady flows.) The problem,
of course, is what to do with the unknowns, p'u and u] Ju]' (The
viscous contribution to T is usually small.) In the k-& model it is
assumed that fluctuations in pressure induced by the turbulent eddies
act to spread the turbulent kinetic energy from regions of strong
turbulence to those of low intensity turbulence, and that this redis-
tribution of energy is a diffusive process. The same assumption is

made about the triple correlations and the vector T is written as,
T — *Vth.

This is a rather sweeping assumption, but it does have the pragmatic
advantage of turning the k equation into a simple advection—diffusion
equation with a source term, G, and a sink, &. The net result is,
Ok

e +u-Vk=V-(v,Vk)+ (’C /p)S; — e (4.30)
This equation at least guarantees that k is a well-behaved parameter.
The ¢ equation, on the other hand, is almost pure invention. It con-
tains three coefficients which are nominally arbitrary and these have
been set to capture certain well-documented flows. In effect, the k-
model is a highly sophisticated exercise in interpolating between
data sets.
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Figure 4.7 Flow between parallel plates.
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We shall return to this model in Section 4.6 of this chapter where
the ¢ equation is described in some detail and the limitations of the k—¢
model are aired. Perhaps it is sufficient for the moment to note that
the k—¢ model has been fairly successful, much more than one might
have anticipated. In fact it has become the standard working model of
turbulence currently used in engineering. It is flawed but simple,
yields a reasonable estimate of the mean flow for a range of geome-
tries, yet often goes badly wrong. Perhaps it is the combination of
simplicity and familiarity which has made it just about the most
popular model for the pragmatic engineer.

With this brief introduction to eddy-viscosity models we now
examine the different types of shear flows which are important in
engineering. We start with wall-bounded flows.

4.2 Wall-bounded shear flows and the log-law
of the wall

The presence of a boundary has a profound influence on a turbulent
shear flow. In part, this is because the velocity fluctuations must fall to
zero near the wall. It is natural to divide up the subject of wall-
bounded flows into internal flows (pipes, ducts, etc.) and external
flows (boundary layers). We start with internal flows.

4.2.1  Turbulent flow in a channel and the log-law
of the wall

Consider a fully developed, one-dimensional mean flow, W=
(#.(y),0,0) between smooth, parallel plates, as shown in Figure 4.7.
The x and y components of (4.4) yield:

2 [ %f 1! —@ (4 31)
pay _1/ Dy Utk | = pe .
o1 = _0op
pa—y _—uyuy] =2 (4.32)
ty
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(We have assumed here that, since the flow is fully developed, all
statistical properties, except p, are independent of x.)
Let us introduce the notation,

Pw =+ pulul. (4.33)

Then (4.32) tells us that p,, is a function of x alone and so, since u’ =0
on y=0,

pw = Pw(x) = P(y = 0).

Evidently p,, is the wall pressure. Noting that puyu, is independent of x
we rewrite (4.31) as

St 5 (4.34)

Since the left-hand side is independent of x and the right is indepen-
dent of y, this equation must be of the form

dit
— |:Vl — u’u’} =—K (4.35)

where pK is, of course, the magnitude of the pressure gradient in the
pipe: a positive constant.

On integrating (4.35) we find that the total shear stress, T,y + ’Cf:y ,
varies linearly with y, with the constant of integration being fixed by
the fact that the flow is symmetric about y— W:

T =Ty + 1y = pPK(W —y) :rw(l—%). (4.36)

It is conventional to introduce the notation
V:=1,/p =KW (4.37)

where 7,, is the wall shear stress and V, is known as the friction velocity.
Then (4.36) becomes

T/p= u%@_ VZ — Ky. (4.38)
We seem to have reached an impasse since, in order to solve (4.38),
we need to know the distribution of ‘ijy. At this point there are two
ways forward. We might invoke some closure model, such as mixing
length, but this will leave us uncertain as to the validity of the results.
An alternative approach is to deploy the rather general tools of
dimensional analysis and asymptotic matching. Rather remarkably,
this second strategy yields definite results, as we now show.
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Figure 4.8 (a) Different regions in a turbu-
lent duct flow (b) Variation of Reynolds stress

and viscous stress with y.
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Let us divide the flow into a number of regions as indicated by
Figure 4.8(a). Close to the wall, y << W, the variation in shear stress
given by (4.38) is negligible and we may assume that 7 is constant and
equal to 7,. We may model the flow by

du -
T/p = I/dL; — o, = Vi, y/W <1 (4.39)

We shall call this region the inner layer or inner region. We retain the
viscous term in (4.39) because, adjacent to the wall, u’ falls to zero and
so the entire shear stress is laminar. The inner layer is characterized by
rapid variations in T, and 'Eiy. Although the sum of the two stresses is
constant, we move rapidly from a situation in which 7 is purely vis-
cous aty=0to T & rﬁy a short distance from the wall (Figure 4.8(b)).
This suggests that we introduce a second region, the outer layer, in
which the laminar stress is negligible,

T/p=—uu, =V Ky, Viy/v>1 (4.40)

Note that we have interpreted far from the wall’ in terms of the
normalized distance V,y/v. This seems plausible since, given the
variables available, there are only two ways of normalizing y, n =y/W
and y" =V,y/v. Only the second of these allows us to make the
dimensionless y large. Still, we should check retrospectively that
V.y/v > 1 does indeed ensure a negligible viscous stress.
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Now in the near-wall region the only parameters on which #, can
depend are V.y, and v. The width W is not relevant because the
eddies centred a distance y from the wall are not generally larger than
y, since u’ =0 at the wall. So near the wall the important eddies are
typically very small and it seems plausible that the turbulence there
does not know nor care about the presence of another boundary
at a distance 2W away.’

In the outer region, on the other hand, we would not expect v to be
a relevant parameter because the viscous stresses are negligible. We
would expect velocity gradients to scale with W since the largest
eddies, which are most effective at transporting momentum, are
of the order of W. So we might anticipate that departures from
the centre-line velocity, A%, = iy — it,, will be independent of v but
a function of W. If all of this is true then we have,

Inner region: u, — ﬂx(y, v, V*), (y/W) <1
Outer region: ity — ity = A (y, W, Vi), (Voy/v) > 1.

In dimensionless form these become

n/Ve=fy"), n<1 (4.41)

Au Ve =g(n), y">1 (4.42)

where n=vy/W and y* = V,y/v. The first of these, (4.41), is known as
the law of the wall, while the second, (4.42), is called the velocity defect
law. Let us now suppose that Re = WV, /v > 1 so that there exists an
overlap region (which is sometimes called the inertial sublayer) in
which y is small when normalized by W, but large when normalized
by v/V,. Then this region has the property that 7 is approximately
constant (since # < 1) and the laminar stress is negligible (since
y*>>1). As both (4.41) and (4.42) apply we have

Yoy Vi f'(y") = —Vang' (n). (4.43)

Now y* and # are independent variables (we can change y* but not 4
by varying v or V,, and # but not y" by varying W). It follows that

y'f'(y") = —ng'(n) = constant = 1/x.

* Actually, this is strictly not true as information is transmitted throughout the flow
by pressure. Thus, in principle, eddies near a wall know about all of the other eddies in
the flow. In fact, there is an influence of the large, central eddies, and hence W, on the
near-wall region. However, it turns out that this influence is restricted to the distribution
of turbulent kinetic energy and does not effect the Reynolds stress or the mean velocity
profile. This issue is discussed later in Section 4.2.2.
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Figure 49 A plot of #,/V, versus y*
showing the log-law of the wall.
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This is the famous log-law of the wall, and the constant x is called
Karman’s constant. There is some scatter in the experimental esti-
mates of k, with most of the data lying in the range 0.38 to 0.43. Many
researchers take x = 0.41. However, because of the uncertainty in the
second decimal place we shall simply adopt x = 0.4.

The log-law of the wall is a remarkable result because we have used
only very general arguments to derive it.° It is deeply satisfying to
discover that it is an excellent fit to the experimental data. In particular,
with the choice of A~ 5.5 and B~ 1.0 we find that (4.44) and (4.45) are
a good fit in the range y* > 40 and # < 0.2. In the region y* < 5 it turns
out that the flow is partially (but not completely) laminar and we have
uy ~ VIy/v. This region is referred to as the viscous sublayer and the
adjoining region, 5 <y* < 40, is called the buffer layer. This information
is summarized in Figure 4.9 and in Table 4.2.

There are other ways of deriving the log-law of the wall. For
example, Prandtl’s mixing-length theory, with [ = Ky, leads to (4.44), as
discussed in Exercise 4.5. (The conventional rationale for taking I o<y
is that the average eddy size grows as we move away from the wall.)

¢ Itis symptomatic of the field of turbulence that even the log-law of the wall, often
held up as a land mark result, has its detractors. There are those who would prefer a
power law and who question the need for universality. In particular, it has been sug-
gested that (4.44) be replaced by #,/V. = a{y")" where a and n are functions of Re.
Nevertheless, the experimental data is well represented by (4.44), which has the
advantage over the power law of being universal. More details of this controversy may
be found in Buschmann and Gad-el-Hak (2003) and in Section 4.2.2.
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Table 4.2 Different regions in channel flow and their associated velocity distributions

Outer region, y+ >1

Velocity defect law (7o — )/ Vi = g(y/W)

Overlap region, y© > 1, <1 Loglaw of the wall  %,/V, = (1/x)In(V.y/v) + A

Inner region, n <1
Viscous sublayer, y+ <5

Law of the wall e/ Ve = f(Vay/v)
= Viy/v

However, the derivation given above is the most satisfactory, as it
makes the least number of assumptions. We note in passing that, in
the outer region, it is conventional to write the defect law as
Au,  wy — Uy 1
= = —=Inn+B—1(n) (4.46)
& Vi K

where 11(#), the difference between the defect law and the log-law, is
called the wake function. There have been several empirical sugges-
tions for Il and the interested reader might consult Tennekes and
Lumley (1972). We might also note that (4.44) and (4.45) may be
combined to give

U 1 WV
ﬂ_—ln( *>+A+B
Ve K v

which relates the centre-line velocity to V,, and hence to K, the
pressure gradient. This expression is an excellent fit to the experi-
mental data for Re > 3000.

4.2.2  Inactive motion—a problem for the log-law?

All in all, we seem to have a fairly complete picture of the Reynolds
stress and mean velocity distributions, a picture which is well sup-
ported by the experiments. However, the scaling arguments which led
us to the log-law have an Achilles” heel. It rests on the assumption that
the turbulence near the wall is independent of W. A moment’s
thought is sufficient to confirm that this cannot be true. Remember
that we have defined turbulence to be a vorticity field which advects
itself in a chaotic manner. In a channel flow or a boundary layer this is
vorticity which has been stripped off the rigid surfaces and thrown
into the interior of the flow. This vorticity is (almost) frozen into the
fluid and advects itself in a chaotic fashion in accordance with the
vorticity transport equation. The turbulent velocity field is, in many
ways, an auxiliary field, dictated by the instantaneous distribution of
vorticity in accordance with the Biot-Savart law. It follows that an
eddy (vortex blob) in the core of the flow induces a velocity field
which pervades all of the fluid, including the near-wall region.
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However, the core eddies are aware of, and depend on, the channel
width 2W. It follows that there are velocity fluctuations near the wall
which depend on W, and it would seem that this is enough to discredit
our derivation of the log-law.

So why does the log-law work so well in practice? Well, it turns out
that the near-wall velocity fluctuations associated with the remote
core eddies contribute little to 'Cf:y, and hence do not greatly influence
the mean velocity profile in the vicinity of the wall. We can show that
this is so as follows. First we note that

0 10 5 5 5
| — ! — ul - / _ ! o /
ay |: uxuy:| uya)z uzwy + Zax [(ux) (uy> (uz> 2

a relationship which can be confirmed by expanding the vorticity
components. Since there is no x-dependence of the statistical variables
this simplifies to

R

92| - e
dy|p *
Evidently, the near-wall Reynolds stress depends only on the near-wall
vorticity fluctuations and on those velocity perturbations which are
strongly correlated to this vorticity. Let us now divide the near-wall
turbulent velocity field into two parts: those fluctuations which are
caused by the small-scale eddies near the wall, and those which ori-
ginate from the remote, core eddies. The former are predominantly
rotational, while the latter are largely irrotational (except to the extent
that some of the core vortices will extend to the wall).

/ — !/ !
u - Wi + W00

(near-wall velocity) = (from near-wall eddies) + (from remote, core eddies)’

So in the near-wall region we have,

0\ [ar | [ o)

a_y 7 o rot x Wirror w X"

However, the vorticity fluctuations near the wall are mostly small in
scale, whereas the near-wall motion induced by the remote, core
eddies consists of a large, planar, sweeping motion parallel to the
surface. This irrotational motion operates over length and timescales
much greater than those of the near-wall vorticity fluctuations. Thus
we might expect u/_ and @' to be reasonably well correlated but u__
and ®' to be only weakly correlated. Indeed, we might anticipate that,
as far as the near-wall eddies are concerned, the slow sweeping motion
induced by the core vortices looks a bit like a random fluctuation in
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the mean flow. If this is all true we would expect the large-scale
irrotational fluctuations to make little or no contribution to the near-
wall Reynolds stress,

0 |7 _
— 2| = [, xo],

ay p Tot

and this would account for the success of the log-law. For this reason

!
irrot

/
Note, however, thatu,__.

o e 2 2 .
near the surface, so that the variation of ()", ()", and k in the log-

u)___ is sometimes referred to as an inactive motion (Townsend 1976).

will influence the kinetic energy distribution

layer should, in principle, depend on the channel width, W.
Townsend’s idea that, as far as the near-wall dynamics is concerned,
the slow sweeping action of the core eddies looks like a random
modulation of the mean flow, has some interesting repercussions. In
particular, it casts doubt over the assumed universality of Karman’s
constant, K. The idea is the following. We know that the timescale of
the core eddies is much greater than the turn-over time of the near-
wall vortices. It follows that the inactive motion (the sweeping effect
of the core eddies) leaves the flow near the wall in a state of quasi
equilibrium. On averaging over the fast timescale of the wall eddies

we have,
o(u+u') B T/p
Oy (Ixl/p)*xy

Here u’ represents the (unsteady) inactive motion and 7 must be
interpreted as an unsteady wall stress, incorporating both the shear
associated with the mean flow, 7,€,, and that caused by the inactive

motion, 7’. The streamwise component of our equation is, of course,

Oy +u,) To + 1T, Vo
y ooy + 7 [/2 Ky
where V, is the shear velocity associated with 14, Vo = 1/70/p. We

now expand |T|_1/Z as a power series in |7|/7, to yield,

(it + 4 . (1) (1) 14
Oy 2ty 872 47k K

Next we consider the relationship between and u’ and 7’. Starting

from 7T~ |ulu and again expanding in a power series it is readily

confirmed that

!/ 12 12 ! .7
U U U U uu

T =1, 224 =+ f2+O(u'3) ., =T 7—Z+%+O(u’3)
Uy Uy 2UL Uy u
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and on substituting for 7’ in terms of u’ our log-law simplifies to

e +1) [

!/
v
142 o(;ﬁ)} N
dy i Ky

X

Finally we average over the long timescale of the inactive motion to

obtain
Oy /Oy = Vo /Ky

At first sight this seems unremarkable (i.e. consistent with the log-
law), until we notice that the long time-average of our equation for 7

yields
_ =
T, =T+ =7 |1+=+-2+0®u")
uz o 2ut

In short, the time-averaged wall stress is not 7, but rather 7, + /.
Consequently, the observed value of V,, as measured by, say, the
pressure gradient, differs from V,,

2 12

Ve=oVo, 7= 1ot 0(7),

u:  4u

and so our long time-average of the log-law of the wall becomes

. V. V.

By (pK)y  Kewy

The suggestion is that in any experiment the measured value of the
Karman constant, K.g will be greater than the supposed universal
value, x, by a factor of y. Moreover, this amplification will depend on
the value of Re. In practice, however, this effect is small (2% or less)
since the magnitude of the inactive motion is always much less than
that of the mean flow.

The observation that there may be more than one length scale of
importance in the near-wall region has encouraged some researchers
to look for an alternative to the log-law of the wall, particularly in pipe
flow. One common suggestion is the power law

i/ Vi = a(y")",

where a4 and n are usually taken to be functions of Re. One
proposal is a =a, In(Re) + a,, n = a;/In(Re), the parameters a,, a,, and
a; being assumed to be universal when Re is based on the mean
velocity. Certainly a judicious choice of a,, a,, and a; provides a good
fit to the experimental data, as good as that obtained using the log-law.
At first sight this looks like a return to the pre-log-law empiricism of
hydraulic engineering. However, theoretical arguments have been
put forward in support of a power law and it is currently receiving
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considerable attention. (See Buschmann and Gad-el-Hak 2003 for
a recent review.) Of course its weakness is the Re dependence of the
coefficients ¢ and n. Occam’s razor might lead us to favour the
log-law.

4.2.3  Turbulence profiles in channel flow

Many measurements of 7\, k=3 (v )?, and S = O, /0y have been
made in channels. The value of ‘Eiy, as well as the individual con-

tributions to 2k, ()7, (u;)z, and (u.)’, rise steadily through the vis-
cous sublayer and the lower part of the buffer region, say y* < 15. In
the upper part of the buffer region (u;)z drops somewhat, though ‘Ci{y
and the other two contributions to k continue to rise (Figure 4.10). By
the time we reach the log-law region, y* > 40, the Reynolds stress and
the rms turbulent velocity components have more or less (but not
quite) settled down to the asymptotic values shown below.

uZ/k~1.1, uZ/k~03, uZ/k=06, 13 /pk~0.28

Actually, because of the large core eddies (i.e. the inactive motion), the
ratio of k to Tf:y is not quite constant in the log region, but rather falls
slowly as we move away from the wall. Townsend (1976) predicted
this decay and, by making some plausible assumptions about the
distribution of eddies in the core flow he was able to suggest

pk/fi{y = ¢ + In(W/y)

for the variation of k in the log region. Here ¢, and ¢, are constants
which depend on the shape and distribution of the core eddies.
(Townsends model is based on the idea that a typical eddy of diameter d
is centred a distance d/2 from the wall, and so eddies of all size are in
contact with the wall—the so-called attached eddy hypothesis.)
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Let us now return to the measurements of near-wall turbulence.
The approximate distribution of turbulent energy generation,
G = (t3,/p)0iy /Dy, is also shown in Figure 4.10. We know that G
falls to zero at the wall and takes the value G = V2 /ky in the log layer.
So we would expect G to be a maximum in the buffer region and this
is exactly what is found. It rises steadily from G =0 at the wall to a
peak value at y* ~ 12 and then declines throughout the upper part of
the buffer region and throughout the log layer. A similar behaviour is
exhibited by k and by the dimensionless parameters G/¢ and Sk/e.
They all peak in the lower part of the buffer region. Evidently, the
buffer region (5 <y' < 40) is the seat of the most violent turbulent
activity. Most data suggests that G/¢& and Sk/¢ settle down to more or
less constant values for y* > 40, y/W < 0.2. The approximate values
of G/¢ and Sk/¢ in the log-law region are (Pope 2000),

G/e ~ 0.91, Sk/e ~ 3.2.

At first sight it may seem odd that G and & do not balance. However
(4.21) applied to channel flow requires G — & = 0T, /Jy where T is the
diffusive flux of kinetic energy arising from viscous effects, pressure
fluctuations and triple correlations. Evidently there is some slight
cross-stream diffusion of turbulent energy.

Note that the k¢ constant, c,, is readily evaluated for this flow. It is
defined by (4.28) to be,

cu = vile/k*] = [,/ pS]le/k’]

Given that 'Ef:y/pk ~ 0.28 and Sk / £~23.2, we obtain ¢, ~ 0.09, which
is precisely the value adopted in the k—¢ model.

The peak in G/& occurs around 10<y* < 15 and takes a value of
between 1.5 and 2.0. Evidently, very near the wall the production of
kinetic energy significantly out-ways the local dissipation. Thus there
is a strong cross-stream diffusion of energy, both towards the wall and
towards the core flow. For more details of the distributions of G, ¢,

and t,,, consult Townsend (1976).

xyl

4.2.4  The log-law for a rough wall

So far we have said nothing about the influence of wall roughness on
the velocity profile. If the rms roughness height, k, is large enough
(greater than the viscous sublayer) then k becomes an important new
parameter and the velocity profile in the inner region must be of
the form,

i)V = fly/k, Voy/v), y/W < 1.
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For large values of V.k /v viscous effects become negligible by com-
parison with the turbulence generated by the roughness elements and
v ceases to be a relevant parameter (except very close to the wall). The
expression for ii,/V, then simplifies to #,/V, = f(y/k). If we now
repeat the arguments which lead up to (4.44) we find a modified form
of the law of the wall:

1 A 1
i/ Vi = Eln(y/k) + constant = Eln(y/yo)

(rough surface)

where vy, is defined in terms of k and the unknown additive constant.
For sandgrain-type roughness we find (4.44) remains valid, and
roughness may be ignored, for V,k/v < 4, while the fully rough
expression above is legitimate for V,k/v > 60, with the additive
constant equal to 8.5. (Interpolation formula exist for 4 < V.k /v < 60.)
Note that an additive constant of 8.5 gives y, = k/30, which is much
less than k.

4.2.5  The structure of a turbulent boundary layer

The essence of the arguments above is that there is a region near the
wall where the flow does not know or care about the gross details of
the outer flow. Its properties are universal and depend only on V,, ¥,
and v (or V, and k if the wall is rough). We would expect, therefore, to
find a log-law and a viscous sublayer adjacent to any smooth, solid
surface in a shear layer. Moreover, the values of k¥ and A should be
universal. The only requirements are that Re > 1 and that variations
of ﬁx,@, etc in the streamwise direction are small. This is exactly
what is observed. For example, in a smooth pipe of radius R we find,

Inner region: i, = Vif (y"); fory <R

Outer region: iy — i, = Vig(y/R); fory™ >1

1
Overlap region: u, =V, [Eln y* +A} ; fory™>1, y<R.

Similarly, in a turbulent boundary layer on a flat plate we have
Inner region: i, = V.f(y"); y <Ko
Outer region: Ail, =iy, — i, = Vog(y/0); y">1
1
Overlap region: i, = V, [;ln y* +A} ; y >, <0,
Here 0 is the local thickness of the boundary layer, i, is the free-
stream velocity as shown in Figure 4.11, and the log-law is found

to apply for y© > 40 and y/d < 0.2. Although the form of #, in the
inner region is universal, the details of the flow in the outer region
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Figure 4.11
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depend on the global characteristics of the flow, and especially on the
free-stream pressure gradient.

It is important to note that the viscous sublayer is not completely
quiescent. It turns out that it is subjected to frequent turbulent bursts,
in which fluid is ejected from the wall, carrying its intense vorticity
with it. Indeed, these bursts are thought to be one of the mechanisms
by which high levels of vorticity are maintained in the boundary layer.
That is to say, all of the vorticity in a boundary layer (both the mean
and the turbulent vorticity) must originate from the rigid surface. This
vorticity may spread upward by diffusion or else by advection. In
a quiescent viscous sublayer the dominant mechanism is diffusion,
whereby vorticity oozes out of the surface and into the adjacent fluid.
However, this is a slow process, and when a turbulent burst occurs the
local value of Re becomes large, allowing vorticity to be transported
by the more efficient mechanism of material advection. Thus, each
turbulent burst propels near-wall vorticity out into the core of the
boundary layer. Perhaps it is useful to think of two parallel processes
occurring near the wall. On the one hand we have vorticity con-
tinually diffusing out from the surface and building up large reserves
of enstrophy adjacent to the wall. On the other hand these reserves
are occasionally plundered by random turbulent burst which fling the
vorticity out into the main boundary layer.

One of the remarkable features of a turbulent boundary layer,
indicated in Figure 4.11, is the highly convoluted shape of the
instantaneous edge of the layer. A velocity probe placed at position A4,
say, will experience intermittent bursts of turbulence. Perhaps we
should explain what the outer edge of the boundary layer (called the
viscous superlayer) shown in Figure 4.11 really represents. Below
the convoluted edge we have vorticity, above it we have none. So by
the phrase ‘turbulent boundary layer’ we mean: ‘that part of the flow
into which the vorticity originally generated at the surface has now
spread’. Now, when Re is large, vorticity is virtually frozen into the
fluid and moves with the fluid. Thus we see that the convoluted outer
surface simply represents the material advection of vorticity by large-
scale eddies as they tumble and roll along the boundary layer.
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You might ask: why is turbulence restricted to that part of the flow
field in which ® is non-zero? This is an interesting question. In fact, if
we make velocity or pressure measurements in the irrotational region
(outside the boundary layer) then we do indeed detect random
fluctuations in u and p. So, in a sense, this region is also turbulent.
Actually, we know this must be true because (2.23) tells us that a
fluctuation in velocity at any one point sends out pressure waves
(which travel infinitely fast in an incompressible fluid) and these
pressure waves induce irrotational motion. Thus, as an eddy rolls
along the boundary layer, it induces pressure fluctuations (which fall
off as y~?) and hence pressure forces and velocity fluctuations in the
fluid outside the boundary layer.” However, we do not choose to call
the fluctuating, irrotational motion turbulent. Rather, we think of it as
a passive response to the nearby turbulent vorticity field. This is a little
arbitrary, but it reflects the fact that there can be no intensification of
velocity fluctuations by vortex stretching, and hence no energy cas-
cade, in an irrotational flow. Moreover, it is readily confirmed that the

y-derivative of the Reynolds stress t,, is zero in the irrotational

xy
fluid and so the point at which #, reaches the free-stream value of
o is effectively the same as the time-averaged edge of the vortical

region.

4.2.6  Coherent structures

Another striking feature of boundary layers is the existence of coherent
structures. This is a rather imprecise term, but it is usually used to
describe vortical structures which are robust in the sense that they
retain their identity for many eddy-turn-over times and which appear
again and again in more or less the same form. An example of such a
structure is seen in Plate 5(b) which shows structures in a boundary
layer visualized with the aid of smoke and a sheet of laser light. It is
clear that mushroom-like eddies are a common feature of such a flow.
Note that the plate shows activity in a single plane only, and so the
precise interpretation of these mushroom-like structures has been a
source of controversy. Most researchers claim that they represent a
slice through a so-called hairpin vortex. These are vortex loops which
span the boundary layer, arching up from the surface (see below).
Others argue that they are vortex rings, localized in the outer part of
the boundary layer.

In any event the most famous of the coherent structures is the so-
called hairpin vortex (Figure 4.6). These are long, arch-like vortices of

7 The fact that pressure fluctuations due to an eddy fall off as y ™ is established in
Chapter 6, Section 6.3.4.
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Figure 4.12 (a) Coordinate system x", y".
(b) Velocity fluctuations needed for a large
Reynolds stress. (c) Side view of a hairpin

vortex.
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modest diameter. The tubes have a maximum length of the order of ¢
and their diameter may be as small as ~5v/V,. Flow visualization
studies suggest that turbulent boundary layers are liberally populated
with hairpin vortices of a variety of sizes, many of them orientated at
about 45° to the mean flow (Head and Bandyopadhyay 1981). It is
likely that they are far from passive and indeed they may contribute
significantly to the Reynolds stress and hence to the production of
turbulent energy.®

Recall that energy passes from the mean flow to the turbulence at

a rate,
R = S
'nySxy ~ —puu —.

Now consider a coordinate system (x*, y"), which is inclined at 45° to
(x,y). Our Reynolds stress can be expressed in terms of these new
coordinates as

& =260y - ) (4.47)

xy 5 VY x

So, a high Reynolds stress is associated with large fluctuations in the y*
direction and weak fluctuations in the x* direction (Figure 4.12(b)).
However, this is precisely what a hairpin vortex achieves
(Figure 4.12(c)) and so they are prime candidates for generating
positive 'Ef:y and, by implication, positive ff:y:?xy.g

This high rate of generation of turbulent energy may be explained
as follows. The hairpin vortices are ideally orientated to be stretched
by mean flow. This is because they are aligned with the principal
strain rate, that is, the direction of maximum stretching. As they are
stretched by the mean flow so the kinetic energy associated with the
tubes is intensified, which represents an exchange of energy from the
mean flow to the turbulence.

It is not difficult to see how hairpin vortices develop in the first
place. The mean flow #, is associated with a vorticity field

® Perry and Chong (1982) and Perry, Henbert, and Chong, (1986) have shown that
many of the observed statistical features of a boundary layer may be reproduced by
imagining that a boundary layer is composed of a hierarchy of hairpin vortices of
different scales.

® Alternatively we may recall that 6% {’E g
fluctuation combined with a cross-stream vorticity fluctuation gives rise to a gradient in

Reynolds stress. This is exactly the situation at the tip of a rising hairpin vortex.

] =p [u/ X L so that a vertical velocity
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Figure 4.13 (a) Formation of a hairpin vortex. (b) A packet of hairpin vortices. (c) Deformation of the mean- flow vorticity by a pair of

vortex rolls.

® = (0,0,®;), as shown in Figure 4.13(a). We might envisage this
vorticity field as composed of a multitude of vortex filaments, or
tubes. Now recall that, when Re is large, vortex tubes are (almost)
frozen into the fluid. Any streamwise fluctuation in velocity (a gust)
will therefore sweep out an axial component of vorticity and we have
the beginning of a hairpin vortex.'® It is readily confirmed that the
curvature of a hairpin vortex induces a velocity field rather like one half
of a vortex ring and that this tends to advect the tip of the hairpin
upwards into the prevailing flow. As soon as the loop starts to rotate
the tip of the loop finds itself in a region of high mean velocity relative
to its base. The vortex loop then gets stretched out by the mean flow,
intensifying the initial perturbation and promoting yet more rotation.
Of course, the tendency for the hairpin to rotate, with its tip moving

1% At the beginning of this process the turbulence is acting on the mean-flow vorticity
by stretching its vortex lines. Later, the hairpin is regarded as part of the turbulence and
the situation is reversed, with the mean flow doing work on the turbulence. There is no
clear division between the two stages and this highlights the slightly artificial nature of
pretending that there are two flows instead of one.
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upwards, is countered, to some degree, by the mean shear which tends
to rotate the vortex in the opposite direction. In order to maintain a
quasi-steady orientation of 45° the two processes must roughly match
and this, in turn, will favour a particular strength of vortex tube.

It seems probable that these hairpin vortices are initiated in the
lower regions of the boundary layer, if for no other reason than the
fact that the mean vorticity, which provides the nutrient in which
these vortices grow, is most intense there. It is also likely that these
vortices are eventually destroyed through their interaction with other
boundary layer structures, or perhaps through cross-diffusion of vor-
ticity between opposite legs of a single hairpin. In summary then, one
possibility for the life cycle of a hairpin vortex is as follows:

(1) axial gust close to the wall + mean cross-stream vorticity — small,
horizontal vortex loop;

(2) self-advection of small vortex loop — rotation of loop;

(3) inclined loop + mean shear — stretching and intensification of
vortex loop;

(4) intensification of loop — accelerated rotation — more stretching;

(5) eventual destruction of loop through interaction with other
eddies or else through the cross-diffusion of vorticity between
adjacent legs.

It should be emphasized, however, that this is a highly idealized
picture. Hairpins rarely appear as symmetric structures. Almost
invariably one leg is much more pronounced than the other, and
indeed often only one leg is apparent. Moreover, other explanations
have been offered for the observed structures. One alternative sce-
nario is that a large eddy in the upper part of the boundary layer is
swept down towards the wall where it collides with the buffer region.
The mean vortex lines in the wall layer are then bent out of shape and
we rejoin the above sequence at point (2). In this picture, then, the
formation of hairpin vortices is triggered by events which begin far
from the wall. This is a sort of ‘top-down’ picture, as distinct from the
‘bottom—up’ view expressed earlier.

There are many other explanations for the observed structures.
Some work better at low Re, others at high Re. Some capture the
behaviour of rough surfaces, others seem to work best for smooth
surfaces. All are cartoons. The unifying theme, however, is the power
of the mean shear to stretch out the vortex tubes across the boundary
layer to form inclined, elongated structures. Usually these structures
are asymmetric, exhibiting one short and one long leg. Sometimes
they appear in groups, with each hairpin initiating another in its wake
(Figure 4.13(b)). In fact, hairpins seem to manifest themselves in a
bewildering variety of forms. While many authors argue about the
precise details of their origin and shape, all agree that hairpins of one

form or another are present in a boundary layer.
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Very close to the wall a different, though possibly related, type of
structure is thought to exist. In particular, pairs of streamwise vortex
tubes (or rolls), of opposite polarity, are thought by some to be the
dominant structure for y+ < 50 (Figure 4.13(c)).

The rotation in the tubes is such that fluid near the wall is swept
horizontally towards the gap between the tubes and then pumped up
and away from the wall. At any one time there may be many such pairs
of rolls and so a marker introduced into the boundary layer near the
wall, say hydrogen bubbles if the fluid is water, will tend to form long
streamwise streaks, and this is precisely what is observed for y* < 20."

There is an interaction between these rolls and the mean spanwise
vorticity, in which the spanwise vortex lines are deflected upward in
the gap between the rolls. This induces a velocity perturbation, u/,
which is anti-parallel to the mean flow and so the streamwise velocity
in a streak is below that of the ambient fluid. (See Example 4.5.) Hence
they are known as low-speed streaks. These streaks are eventually
ejected from the wall region once they get caught up in the updraft
between the rolls. The ejection process is often followed by a so-called
burst, in which there is a sudden loss of stability in the rising fluid and
a more erratic motion ensues. Indeed, these near-wall bursts are
thought by some to be one of the primary mechanisms of turbulent
energy generation in a boundary layer. In some cartoons the
streamwise rolls are associated with the lower regions of hairpin
vortices,'” those parts of the vortex which lie close to the wall having
become highly elongated due to the strong local shear. Moreover,
there is some evidence that the hairpins themselves appear in pack-
ets,"”” one following another (see Figure 4.13(b)), so that the low-speed
streak which lies below such a packet may appear considerably longer
than any one hairpin. (The low-speed streaks are typically 10° wall
units long, ~10°v/V,, while individual streamwise rolls might have a
length of, say, ~200v/V..) In this model, then, the streamwise streaks
are an inevitable consequence of the rolls and the rolls themselves are
the foot-points, or near-wall remnants, of one or more hairpin vor-
tices. There are other cartoons, however.

In one alternative model the rolls are not attached to any vortical
structure in the outer part of the boundary layer, but rather owe their

" Alternative explanations for the observed streaks have been offered. See Robinson
(1991).

'? In this picture the rolls are the foot-points of a hairpin vortex in which the lower
portion of the hairpin has been subject to extensive streamwise straining, resulting in
strong streamwise vorticity (see Figure 4.13(b)). This stretching also drives the two legs of
the hairpin together, producing a structure reminiscent of that shown in Figure 4.13(c).

? Such packets arise as follows. Consider that region of a hairpin leg where the
vortex begins to lift off the wall, developing a slight angle of inclination to the surface.
The induced velocity at this point has a streamwise component which, in turn, bends the
mean-flow vortex lines out of shape, that is, step (1) above. This initiates a new ‘baby
hairpin” in the wake of the parent vortex.
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existence to a sort of near-wall cycle in which both the streaks and
rolls are dynamically interacting structures. For example, some
researchers believe in a regenerative cycle in which rolls produce
streaks, the streaks become unstable, and the non-linear instability
generates new rolls. Clearly there is still much debate over how
exactly to interpret the experimental evidence, but see Jimenez (2002),
Panton (2001), or Holme et al. (1996), for more details.

Example 4.5 Deformation of the mean-flow vorticity by a pair of
vortex rolls

Consider the deformation of the mean-flow boundary-layer vorticity,
@, = —0u,/dy, by a pair of vortex rolls, as shown in Figure 4.13(c).
The mean-flow vortex lines are bent upward in the gap between the
rolls, creating a vertical component of vorticity as shown. Use the
Biot-Savart law to show that the perturbation in velocity midway
between the rolls caused by this vortex-line deformation is anti-parallel
to the mean flow, thus creating a low-speed streak.

Example 4.6 Winding up the mean-flow vorticity with a single
streamwise vortex

Consider a homogeneous, z-directed shear flow, u = Syé,. We are
interested in how this flow is distorted by the introduction of a
streamwise line vortex. Clearly the mean-flow vorticity, @ = Sé,, will
be wound up by the line vortex as shown in Figure 4.14. This will
result in oscillations of the axial velocity u,(x, y), possibly leading to an
instability of the mean flow. In order to model this we consider an
initial-value problem in which a line vortex is introduced at t=0. In
order to keep the analysis simple we assume no z-dependence in the
flow at t = 0, which ensures a z-independent solution for all t. Confirm
that the flow may written as the sum of two parts:

axial flow: u(x,y,t) = u,(x,y,t)&,, o(x,y,t) = 0.8, + w8,

line vortex: u(x,y,t) = u, &, + u, &, o(x,y,t) = 0,(x,y,t)&,

and that the governing equation for each part is,

ot
Jw,

ot

where u; =u,e, +ue,. Note that the line vortex is decoupled from
the shear flow. In Section 5.3.3 of Chapter 5 we shall see that a line
vortex freely decaying under the influence of viscosity takes the form

r
W, = 7t_502 exp(—rz/éz)

+u, - VCOZ = I/VZCOZ

— Lo 2 /52 —
uQ—E[l—exp(—r /09)], =0
6 = 8% + 4vt



Figure 4.14 Winding up of the mean-flow
vorticity by a streamwise vortex. (After F.S.
Sherman 1990.)
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where we have used cylindrical polar coordinates centred on the axis
of the vortex. The constant I', represents the strength of the vortex
and 9 is its characteristic radius. For simplicity we shall take d,=0.

The problem now is to determine the evolution of the axial flow,
u,. Confirm that the solution for ¥ =0 is

u, = Srsin(6 — 1), v = [ot/2mr*.

Sketch the variation of u, and wy with r and confirm that, as we
approach the origin, they oscillate with ever increasing frequency.
Now show that the solution for non-zero viscosity takes the form
u
S—Z = A(7) sin(0) + B(7) cos(6)
v
and find the governing equations for A and B. Confirm that an

asymptotic solution for small viscosity is

ur 8nt? \ .
5 P ( BTO/J/) sin(0 — 7).

4.2.7 Spectra and structure functions near the wall

So far we have discussed only one-point statistical properties of a
boundary layer, that is, statistical properties measured at only one
point in space. In Chapter 3 we emphasized that two-point statistical
properties, such as the structure function

<[Au;]2> = <[u;(x +réy) — u,’c(x)}2>
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are required if we wish to determine the manner in which energy is
distributed across the different eddy sizes in some region of the flow.
We close our brief overview of boundary layers with a few comments
about ([Au’]*)(r) which, as you will recall, provides a measure of the
energy held in eddies of size r. (In this context both x and r are
measured in the streamwise direction.)

When Re is large, it is observed that, in the outer part of the
boundary layer, the Kolmogorov two-thirds law, ([Au’]?) ~ &2/3¢%/3,
holds true for 7 < r< 0 where 1 now represents the Kolmogorov
microscale. This is, of course, to be expected, since we anticipate that
Kolmogorov’s two-thirds law will hold whenever the inertial subrange
may be treated as approximately homogeneous and isotropic (see
Chapter 3). As we move closer to the wall, however, the eddies
become increasingly inhomogeneous and anisotropic since the vertical
fluctuations tend to zero much faster than the horizontal ones. This
promotes a departure from the two-thirds law. In particular, we find
that the 7*’? inertial subrange becomes narrower and a new regime

appears wedged between the r*'*

range and the large scales (Perry,
Henbest, and Chong 1986). It may be argued that this new regime is
characterised by a constant value of ([Au’]?), which is of the order of
~ V2. Since ([Aul]*)(r) is an estimate of the energy held in eddies of
size r, these results tend to suggest that, near the wall, there exists a
range of eddy sizes in which the kinetic energy density is more or less
constant and equal to V2. (Remember that w2, which is dominated by
the large eddies, scales as V? in the loglaw region.) Thus, as we
approach the wall we find that ([Au’]?) ~ V2 to the right of the
inertial subrange (large 1), while the estimate ([Au’]*) ~ &¥/*r?/%
continues to hold in the low-r end of the inertial subrange. This is
shown schematically in Figure 4.15.

We may show that the cross-over between ([Au/]’) ~ V2 and
([AuL)?) ~ /%% occurs at r~y as follows. Since & ~ G = V? /Ky the
form of ([Au']*)(r) in the two regimes may be written as

(M) ~ve ([Ad]P) ~ s, y<

Evidently there is a transition from one to the other at r~y. So we

may summarize our results in the form

<[Au;]2> ~ V2, y<r<9d, (y<od)

2
3

<[A“§c]2> ~VHr/y), n<r <y, (y<9)

Actually, data taken in the atmospheric boundary layer suggests
that the ([Au!]?) ~ V2 law may be extended up to r~ 56 at high Re.
Usually these results are expressed in terms of the one-dimensional

Fourier transform of u.. If E.(k,) is the one-dimensional power



Figure 4.15 The possible shape of the
structure function ([Au’]?) near the wall.

Free shear flows

ux ul

——— e — ——— — —n

Log {[Au}]) W — 4
|82/37‘2/3 | |

} Large scales

I
|
[ * !
!

nertial range,

|

|
| |
|
‘ |
' |
| I
| |

Log (r)

|

|

|

|

|

!
Log () Log () Log (0)
spectrum of u, then the equivalent results in Fourier space are:

Ey(ky) ~ V2K Ey(ky) ~ 2%k

*Ux

for the low-to-intermediate k and intermediate-to-high k ends of the
spectrum respectively. This follows from the fact that

(k) ~ ( [A]") ()

where v ~ k_! (see Chapter 8). Note that this k~' behaviour is not
exhibited by the one-dimensional spectrum of u,. Note also that a
large Re (Re > 10°) is needed if the k™' region is to be observed.
Indeed, even at Re = 10° the extent of the k™' region is so slight that
there are those who remain unconvinced as to its existence.

This concludes our all too brief overview of wall-bounded shear
flows. The subject is an important one and there exists a vast literature
on it. Some suggestions for further reading are given in the references
at the end of the chapter.

4.3 Free shear flows

We now turn to shear flows which are remote from boundaries:
so-called free shear flows. This includes turbulent jets and wakes. In the
interests of simplicity we start with two-dimensional jets and wakes.

4.3.1 Planar jets and wakes

Examples of planar jets and wakes are shown in Figure 4.16. The mean
flow is characterized by #, > 4, and 0/0x < 0/0y. The turbulence,
on the other hand, is characterized by the sudden transition from a
turbulent vorticity field to an irrotational external motion. As in a
boundary layer, the interface between the two regions is highly con-
voluted (see Plate 6), and so a probe placed at points A or Bin Figure 4.16
will see intermittent bursts of turbulence. Curiously, though, the nature
of this interface appears to change at around Re ~ 10" (Dimotakis 2000).
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Figure 4.16 Planar jet and wake. See also
Plate 6.
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Below Re~ 10° there is relatively little fine-scale turbulence and the
interface between the turbulent and irrotational fluid undulates on the
large scale only. Above Re ~ 10" the turbulence appears to be more
fully developed, with a pronounced fine-scale structure. The turbulent/
non-turbulent interface is now more intricate, exhibiting both large and
small-scale wrinkles. As yet, there is no satisfactory explanation for this
intriguing transition.

Let us now set out the governing equations for a jet and wake.
We start by noting that there are three simplifying features of these
flows:

(1) axial gradients in the Reynolds stresses, (9’55 /Ox, are much smaller
than transverse gradients;

(2) the laminar stresses are negligible;

(3) the transverse component of the mean inertia term, (u- V)u,, is
of order #*/(radius of curvature of mean streamlines) and so is
very small.

The axial and transverse equations of motion then simplify to

p(u- V)i :% [fij] . % (4.48)
0= 8% [’C;{y} g—i. (4.49)
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The second of these tells us that
— 2 —
Pt p(u;> = Poolx)

where p (x) is the pressure far from the jet or wake. However p, is a
constant if the external flow outside the wake is uniform (which we
assume it is) and it is certainly constant for a jet. It follows that, in
either case, p is a function of x only to the extent that (u;)z depends on x.
Since longitudinal gradients in the Reynolds stresses may be neglected
(4.48) simplifies to,

%

p(a-Vu, = 5 (4.50)

to which we might add
V.-u=o. (4.51)

Combining these we obtain the simplified momentum equation,

. , O 1 afij
a [pux] + a_y [puyux] = a_y (4.52)

In the case of the wake it is more convenient to rewrite this as

O
S lon (Vw4 o (v )] = -

By (4.53)

Ox
where V is the external velocity and the quantity V — #, is known as
the velocity deficit. Now u, (in a jet) and (V — i) (in a wake) both
tend to zero for large |y|, as does fiy. It follows that, if we integrate
(4.52) and (4.53) from y= —00 to y= 100, we find,

M= / puldy = constant  (jet) (4.54)
-0
D= / puy(V — uy)dy = constant  (wake). (4.55)

The first of these tells us that the momentum flux in a jet is conserved,
that is, independent of x, while the second says that the momentum
deficit in a wake is constant. Note that, although momentum, or
momentum deficit, is conserved in a jet or a wake, the mass flux, m,
need not be. Indeed, a turbulent jet, like its laminar counterpart, drags
ambient fluid into it, increasing its mass flux. This process is known as
entrainment. In a laminar jet, entrainment is caused by viscous drag,
while in the turbulent case it is a result of the convoluted outer
boundary of the jet which continually engulfs external, irrotational
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Figure 4.17 Entrainment into a planar jet.
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fluid. Thus, far from the jet, there is a small but finite flow towards the
jet which feeds its increasing girth (Figure 4.17).

We now consider jets and wakes separately. We start with the
former. Traditionally, there have been two distinct approaches to
modelling turbulent jets. As it turns out, both yield more or less the
same result. One method of attack rests on the Boussinesq-Prandtl
idea of an eddy viscosity; the other rests on characterizing the rate of
entrainment into the jet. We start with the entrainment argument.

Let d be the initial width of the jet. It is an empirical observation
that, after a distance of ~30d, the jet has forgotten the precise details
of its initiation and so its local structure is controlled simply by the
local jet speed, say its centre-line velocity, and the jet width, 6(x). Thus
we may write #,(x,y) = f(y, #y(x),6(x)). It is then a dimensional
necessity that the jet adopts the self-similar structure

5 /96 = £ (4.56)

where #, is the centre-line velocity. It is this simple yet crucial

observation about the self-similarity of #, which allows us to make
some progress. Let us pursue some of its consequences. Two
immediate results are that, for large enough x,

M= / pildy = puéé/ f*dn = constant
—00 —00

m = / pudy = pﬁoé/ fldn o pugd.
—00 —00

Now let us suppose that the rate of entrainment of mass at any one
point is proportional to the local fluctuations in velocity, u’. These, in
turn, are proportional to the mean (local) velocity in the jet, and so on
dimensional grounds we have

d . 3 o0
2 i) = apit, / fin
dx o
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where o is an example of an entrainment coefficient. (The integral on the
right is included for algebraic convenience.) It follows that, for large
enough distances downstream,

d 1
#.0 = constant, ™ (e0) = zocﬁo

If we take o to be constant we can integrate these equations to yield

)

214 (4.57a)
Jo o

110 o 71/2

M| E 57b
V. [ +5J (4.57b)

where the origin for x is taken at the start of the self-similar regime
and 0, and V, are the values of ¢ and #, at x=0. Actually it turns out
that (4.57a) in the form

do
7, — &= constant

is an excellent fit to the experimental data with a2~ 0.42, giving a semi-
angle of ~12°. This provides some support to the idea of using a
constant entrainment coefficient. (It is also common to quote a semi-
angle based on a wedge defined by the point where u,/u, = 0.5. This
angle is around 6°.)

Let us now see where the Boussinesq-Prandtl eddy-viscosity
hypothesis leads for a planar jet. For simplicity we take v, to be
independent of y and determined by the local values of i,(x) and d(x).
On dimensional grounds we have 14 ~ d(x)ig(x) and so we write
vy = bd(x)uy(x) for some constant b. (This estimate of v, was first
suggested by Prandtl in 1942. It is appropriate only to free shear flows
and has the advantage over (4.13b) that it is simpler to use and does
not give the unphysical result that 7, =0 on the jet centre-line.) Our
governing equation (4.50) now becomes

_ Ou, _ Ouy

0%,
o Ty

= bd(x)ie(x) FER

This admits a self-similar solution of the form (4.56) in which,

F?+FF"+1’F" =0,  f=F(y)

o 4

do 225,

o [1 &} e
Vo 228,
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Figure 4.18 Comparison of theory and
experiment for a plane jet.
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where 4 is an (as yet) undetermined coefficient. Evidently we have the
same power law behaviour as before (5 ~x, iy ~ x '/?) with the
eddy-viscosity coefficient b related to the entrainment coefficient by

oc:@:%/)uz
dx

The equation for F is familiar from laminar jet theory and may be
integrated to give (see Example 4.7),

ihe/to = f(y/0) = sech®(y/15)

So far, we have not given a precise definition of J, and it is this which
fixes the value of 4. Of course, any definition is somewhat arbitrary
since the time-averaged velocity profile declines exponentially with y.
Let us adopt the simple definition that the jet velocity has dropped to
10% of #, when y= £+6/2. This yields A=0.275 and, given that
o~ 0.42, we find b~28.0 X 10 °. The eddy viscosity is then given by

v, &~ 0.0080 Ou,

So how do our mixing-length estimates fare against the experi-
mental data? The answer is: surprisingly well! If we exclude the initial
part of the jet, where it is not fully developed, then the estimates 0 ~ x,
iip ~ x /% and f~ sech®(y/A0) are all excellent fits to the data, as
illustrated in Figure 4.18. Moreover the estimate v; ~ 8 X 10 *0u, is
close to the observed value.

Example 4.7 Show that the plane jet equation

F? +FF" +1’F" =0,  f=F(y)
may be integrated twice to yield

PF —1)+F =0
and hence confirm that the jet profile is

/sy = f(y/8) = sech’(y/20).
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Consider now the plane wake shown in Figure 4.16. It is usually
found that, well downstream of the object which initiated the wake,
the velocity deficit, u; = V — u,, is much smaller than V and so a good
approximation to (4.50) is

Dy oy,

Vo~ oy

Let ip(x) = us(y = 0) and suppose 1, = bd(x)uy(x), as before. Then
our simplified momentum equation yields
g

VE = bd(x)itg(x)

Puy

Oy

This has a self-similar solution in which é ~x'/?, #, ~ x V2 and Uy

satisfies
iy = #io(x) exp [ — ¥*/(46%)]

Note that the combination of & ~x'/? and i, ~ x~/? satisfies (4.55) in
the form

o0
/ pV(V — u,)dy = constant.

oQ

Measurements of planar wakes suggest that, well downstream of the

/2 and

obstacle which created the wake, é and #, do indeed scale as x"
x~''%. Moreover, the velocity profile is self-preserving in the sense that
g = uof(y/d), and the particular form of f suggested by mixing
length is a good fit to the data. As with the jet, 4 can be pinned down
through a suitable definition of . For example, we might define ¢

through the requirement u4(d/2) = 0.05u,, which fixes A ~ 0.083.

4.3.2  The round jet

We now turn to the case of an axisymmetric jet. As with the planar jet
this is characterised by #, > %,, and 0/0z < 0/0r. (We shall use
polar coordinates, (r, 0, z) in this section.) Of course, u, falls off with
axial distance while J, the time-averaged diameter of the jet, increases
as the jet spreads. However, it is observed that, after ~30 diameters
downstream of the source, the time-averaged velocity profile depends
only on radial position, 7, the local jet width, d, and the local centre-
line velocity. It is then a dimensional necessity that u,(r, z) adopts the
self-similar form

5(r2) _ r/0(z iy = (0,2
L ST}
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Figure 4.19 A round jet. The jet consists of
vorticity which has been stripped off the
inside of the nozzle and is then swept
downstream. The convoluted outer edge of
the jet represents the interface between fluid
filled with vorticity and the external,
irrotational fluid.

154

Irrotational

Fluid containing
vorticity

The instantaneous interface between the turbulent jet and its sur-

roundings is highly convoluted, as we would expect, since the tur-
bulence is a manifestation of the vorticity which is extruded from the
inside of the nozzle and then swept downstream (Figure 4.19). When
Re is large this vorticity is virtually frozen into the fluid and so the
convoluted outer edge of the jet, which marks the outer limits of the
vorticity, is an inevitable consequence of the eddying motion within
the jet. As with a planar jet, there is entrainment of the ambient fluid
as the convoluted outer edge engulfs irrotational fluid. Thus the mass
flux of the jet increases with z.

The governing equations for a round jet may be simplified for three

reasons:

(1) axial gradients in the Reynolds stresses are much weaker than
radial gradients;

(2) laminar stresses are negligible;

(3) radial components of the mean inertial force are negligible.

The time-averaged Navier-Stokes equation then yields (see

Appendix I)

o 0P 10 &
pu- Vi, 8z+r8r[ Yz}
0p 10 [ gy T
0= Tl -

The second of these may be integrated to give

OO’CR—’L'R
szﬁ/ [w QQ]dY
y g

where we have taken the pressure at v+ — 00 to be zero. Since axial
gradients in the Reynolds stresses are much smaller than radial
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gradients, this tells us that we may take 0p/0z =0 in the axial
equation of motion. The end result is:

o 10, 0 _ 0
pu- Vi, = ~o [rpu,u;] + 7 [puﬂ =5 [rrfz]

from which we see that the momentum flux is conserved:
o0
M= / [pﬂi] 2mrdr = constant.
0

If we now invoke the self-similar approximation u, = #,f(r/d) we can

express the mass and momentum fluxes as

= piigd* / 2mn f(in)dn
0

M= pﬁééz/ 271 f*(n)dn = constant
0

where #=r/0. As with the planar jet, we may estimate the rate
of change of #, and J using an entrainment argument or else an
eddy-viscosity approximation. Let us start with the entrainment
approach. It seems plausible that the rate of entrainment of mass
per unit length is proportional to the perimeter of the jet and
the local intensity of the turbulent fluctuations. These fluctuations
are, in turn, proportional to the local value of #,. Thus we might

write

dm

= = 0 / 2mn f(n)dn
z 0

where o is an entrainment coefficient and the integral on the right has
been added for convenience. We now have the two equations,

d

E [11052] = Olﬁoé

_2¢2
uéé = constant

which integrate to give

571+ocz*

S do

U az*] !
0

— =

Vo [+50]
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where z" is measured from the start of the self-similar portion of the
jet and g and V, are the values of d and #, at z* = 0. Note that, as for a
planar jet, we have

do
— = o = constant.
dz
It turns out that a linear growth of 0 is exactly what is observed, and
if we define ¢ via the condition #,/#, = 0.1 when r=49/2, then
00~ 0.43.

The eddy-viscosity approach is similar to that for the planar jet. We
take 1, = bd(z)uy(z) and then look for a self-similar solution of

,
r| Or

10 [ Ou,
u - Vi, = (boug) —— { ”}.
ro
It is readily confirmed that setting u, = uyf(r/d) leads to

n
nf 4+ (o/b) [ﬂfz L / nfdn] o

@
dz

_2¢2
ugé = constant

= 0 = constant

where #=r/d. Evidently the eddy-viscosity approach leads to the
same laws for & and #, as the entrainment coefficient method. The
governing equation for f may be integrated to give

1

f:m, a:a/(Sb).

We now recall that ¢ is defined so that u,/u#, = 0.1 when r=20/2.

This requires f= 0.1 when # = 1, which in turn gives a = 8.65. The

relationship between o and b is then b — a/69.2 and since o is observed
to have a value of around 0.43 we have b~ 6.2 X 10 .

The form of f predicted by the eddy-viscosity method gives a good
fit to the experimental data and so, as for the planar jet, we see that
the eddy-viscosity method works well. The comparison of prediction
with experiment for a round jet is very similar to that shown in
Figure 4.18 for a plane jet. In both cases the mixing length tends to
slightly overestimate the velocity at the edge of the jet. This is because
the assumption that v, is independent of r leads to an overestimate of
v, near r = 0/2 and this, in turn, leads to an underestimate in the cross-

stream gradient in mean velocity.
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Figure 4.20 (a) Variation of Reynolds
stresses with radius for a round jet.

(b) Variation of kinetic energy generation,
G, transport, Tr, and dissipation, ¢, for a
round jet as a function of radius.

Homogeneous shear flow

The observed variation of the different Reynolds stresses with 7/9 is
shown in Figure 4.20(a). Notice that, although u? ~ u_g, the large
scales in the jet are far from isotropic, with #2 ~ 2u’2 in the core of
the jet.

Figure 4.20(b) shows schematically the various contributions to the
turbulent kinetic energy equation (4.21). As might be expected, the
dissipation is fairly uniform over the centre of the jet, falling off as we
move to edge, r=0/2. The generation of turbulent energy, on the
other hand, is small near the centre-line since the mean rate of strain is
weak at r = 0. It peaks around r=0.3(3/2), where G/¢~ 0.8, and then
falls off as we move towards the edge of the jet. The transport of
turbulent kinetic energy by pressure fluctuations and the triple cor-
relations, Tr= —V - (T), is negative in the core of the jet and positive
near the boundary. This represents a radial flux of energy from the
region of most intense turbulence to that of weaker turbulence, which
is consistent with the modelling of V- (T) as a diffusive process in
the k-& model.

4.4 Homogeneous shear flow

The simplest shear flow which can be (approximately) realized in the
laboratory is that of homogeneous shear. That is, we imagine that we
are well-removed from any boundary, that the mean velocity is
a = (i (y), 0, 0), where u,(y) = Sy, and that the spatial gradients in
the turbulent quantities are negligible. Such an idealized situation is of
little direct practical interest, but is highly instructive from a theore-
tical point of view. In particular, it illustrates in a simple way the
interaction between turbulence and a mean shear, and highlights
the role played by pressure forces in redistributing energy between the
different components of motion. It also forms a useful test case against
which to compare engineering ‘models’ of turbulence.

4.4.1 The governing equations

Suppose that we have a steady mean flow, u, = Sy, and turbulence
whose statistics are homogeneous (independent of position) and
possibly unsteady. Despite the fact that the turbulence statistics may
evolve in time we retain time averages as a way of evaluating mean
quantities, on the assumption that the rate of change of statistical
quantities is slow by comparison with the timescale of the turbulent
fluctuations. The turbulence has reflectional symmetry about the x—y
plane and this ensures that ‘csz = T;Z = 0. The quantities of interest,
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then, are fiy, (uj’c)z, (u;)z and (u;)z. For homogeneous turbulence the

time-dependent generalization of (4.8) yields evolution equations for
each of these:

% [P (w)* | = 27/, — 2pv 8_;1: gzi s
% [P(vé)Z_ =2p'S,, —2pv 2_22—2
% [P(ué)z- — 275 — 2pv azi gZi

gt |:T§y = —2p'S, +2pv a_f]:a_xi (u;) ZS

Now the turbulent motions which contribute most to the viscous
terms above are the small-scale eddies. These are approximately iso-
tropic and so we may replace the viscous tensor by its homogeneous,

isotropic equivalent:

ou} auj B 385

v —
Ox, Ox;, 3

i+

Our governing equations now simplify to

0 rl 17 — 1
E [zp(u;)z ] = PIS;X — gps + 'Ei{ys (4.583)
0 1 2] — 1
E [Ep(u;) = p’S;,y — 3,08 (4.58}))
011 7 1
— |=pl{u’ =9’ — = 4.58
= 5P ()| =7 —pe (4.55)
9 rR] = —2p'S. + (’)Zs (4.58d)
ot L™ T POy TR\ ) o :

The first three of these combine to give the familiar energy equation

dk
i (5S/p) —e =G —e. (4.59)

(Remember that S; = 0 because of the continuity equation.) Evidently
the turbulence is maintained by the rate of working of the Reynolds
stress, G, and destroyed in the usual way by the small-scale eddies. If
G =& we have steady turbulence, whereas an imbalance between G
and ¢ will lead to the growth or decay of the turbulence.

It is clear from (4.58a—) that ’Ciy generates only (u)’, yet dissipa-

tion is present in all three equations and observations suggest that all
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Figure 4.21 (a) A shear flow can be
decomposed into an irrotational straining
motion plus rigid-body rotation. (b) The
influence of the irrotational straining on a
tangle of vortex tubes is shown.

Homogeneous shear flow

three components of u’ are of a similar magnitude. (Typically, after a
while, we find that the various components settle down to
(u,)* ~k, (w)* ~ 0.4k, and ()" ~ 0.6k.) Evidently the role of the

pressure-rate-of-strain correlation is to redistribute energy from u’ to
u; and u. This is thought to be typical of the role of pressure fluctua-

tions: they tend to scramble the turbulence, continually pushing it

towards an isotropic state. However, they can neither create nor
destroy turbulent energy and this is why they are absent from (4.59).

Notice that the mean shear S acts directly as a source for ’Ef:y in
(4.58d). Thus, if the turbulence were initially isotropic, so that ‘Ci{y
starts out as zero, the Reynolds stress will not stay zero for long.
That is,

% [Tiy:| = p(u;)ZS + [pressure term].
The growth in ff:y caused by the mean shear tends to be offset, to
some degree, by the ‘scrambling’ effect of the pressure term. Never-
theless, ’L'ij invariably ends up as positive, leading to a net transfer of
energy from the mean flow to the turbulence via the generation
term, G.

We may understand the way in which S and ’ijy promotes turbulent
energy as follows. The shear flow #, = Sy may be divided into an

irrotational plane strain plus one component of rotation:
u= %(Sy, Sx,0) + % (Sy, —Sx,0)

We recognize the second of these terms as having uniform vorticity,
® = (0,0, —S), and representing rigid-body rotation. The first
represents an irrotational straining motion whose principal axes of
strain (the directions of maximum and minimum rate of straining) are
inclined at 45° to the x and y axes (Figure 4.21). Evidently vortex lines
tend to be teased out in the direction of maximum strain while
undergoing some rotation. The process of stretching the vortex lines
tends to intensify their kinetic energy and it is this which maintains the
turbulence in the face of viscous dissipation (Figure 4.21). The vortices
which result from this process tend to be aligned with the maximum
principal strain and, as shown by (4.47) and Figure 4.12 they are ideally
suited to generated a high value of Tzlc{y' So the production of a positive
Reynolds stress and the generation of energy are both part of the
same process.

It is instructive to explore a little further this idea of turbulence
generation by vortex stretching. Writing @ = @ + @’ the vorticity

equation becomes

Do’

o o Vv +o Vit Vi+vwWe'

and on substituting for u and ® this yields
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Figure 4.22 'The creation of turbulent vor-
ticity through the action of turbulent gusts
acting on the mean vortex lines.

160

Turbulent gust

Mean flow
Do’ o’
= —S—+Sw'é, + o Vi + Ve
Dt 0z Y

1 @ (3) (4)

Let us consider the various contributions to the right-hand side of this

equation.

ey

@)

3)

(4)

The first contribution, —SOu’/dz, has its roots in the term
V X (W' X ®) and so represents the advection of the mean vortex
lines by the turbulent velocity field. It may be pictured as shown
above (Figure 4.22). A turbulent ‘gust’ distorts the mean vortex
lines, producing some turbulent vorticity. For example, a vertical
gust, u, induces vertical vorticity, co;. So —Sdu'/0z acts to
convert mean vorticity into turbulent vorticity.

The second contribution, Sco; &,, derives from the term
V X (u X @') and so represents the action of the mean velocity
on the turbulent vorticity. As discussed above, this process is one
by which the mean flow intensifies the turbulent vorticity by
vortex stretching (Figure 4.21). The reason why it appears as a
source of streamwise vorticity can be understood as follows. The
mean velocity, u, = Sy, tilts the vertical vorticity a);, thus acting
as a source of @’.

The term @’ - Vu' represents the chaotic advection of the tur-
bulent vorticity by u’, that is, turbulence acting on itself. It is this
process which feeds the energy cascade, passing energy down to
small scales by vortex stretching. Since vorticity is intensified by
the cascade, ®'- Vu' is dominated by the small-scale vorticity.
Of course vV’w' represents the diffusion of vorticity. This is
important at small scales where it leads to the destruction of
enstrophy by the cross diffusion of patches of oppositely signed
VOrticity.

Let us now take the product of @’ with our vorticity equation. This
p q

yields
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D
— [}(o')*] = =8V - [wo'] + Sw,w|, + vjws; +ve' - Ve

Dt
(1) (2) (3) (4)

where we have used the fact that @' - Vi, = @' - 0u’/0z to simplify
the first term on the right. Next we ensemble average this equation
while noting that homogeneity requires the divergence of an average
to be zero. The end result is

%<%(m’)2> = S<co;a);> + <a)fco]’Sfj> —v{(V x &')?).
(2) (3) (4)

Interestingly effect (1) does not appear in this averaged equation. It
seems that V x (0’ X @) can create turbulent vorticity by bending
the mean vortex lines, but that this does not influence the mean
enstrophy when homogeneity is imposed.

So we may interpret the evolution of the vortex field, and by
implication the turbulent velocity field, as follows. Turbulent vorticity
is continually amplified by the mean strain Sy. This represents a
transfer of energy from the mean flow to the turbulence. The large-
scale vorticity is then passed down the energy cascade by ' Vu'
(turbulence acting on turbulence) until it is destroyed at small scales.

4.4.2  The asymptotic state

Now suppose that at t=0 we start with isotropic turbulence. The
asymmetry in the equations (4.58a—c) means that it will not stay iso-
tropic for long and it is natural to ask if the turbulence will tend to a
new, anisotropic state determined simply by S. (It is not obvious
whether such a state should be steady or unsteady.) It turns out that
the numerical and experimental studies suggest that the turbulence
tends to a state in which the ratio of G to € is constant, as is the ratio of
Tij to pk. Since (4.59) may be rewritten in the form
a R

m[lnk] :p—xi[l—g/G]

it follows that the asymptotic state is of the form
k= k() exp [/ISt]

where /A is the constant,

R

z_;—’z[lg/c]
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Estimates of ‘Ciy /pkand G/evary, buttypical values are given in Table 4.1
in Section 4.1.3 of this chapter. These are

R _ _
T,/ Pk = 0.28, G/e=1.7
from which

k = ko exp[0.12 St]
& = g exp[0.12 St].

Also, since &~ u’/1, the integral scale will grow as
1= k*?/e ~ 1 expl0.06 St.

We shall return to homogeneous shear flows in Section 4.6.1 of this
chapter where we shall see that they provide a convenient test case for

various ‘models’ of turbulence.

4.5 Heat transfer in wall-bounded shear
flows—the log-law revisited

4.5.1 Turbulent heat transfer near a surface and the
log-law for temperature

The influence of turbulence on heat transfer is an important practical
problem and perhaps now is the right time to say something about it.
Consider the situation shown in Figure 4.23(a). Heat will be carried
from the hot wall to the cold one by turbulent diffusion. That is, heat
is materially transported by the random eddying motion and this
mixing process will have the effect of dispersing the heat, carrying hot
fluid away from the lower wall and cold fluid away from the upper
surface. In the core of the flow (i.e. away from the boundaries), the
large eddies are the most energetic, and span the largest distance, and
so they are the most important ones for transporting heat. The small-
scale eddies in the core, which have a much faster turn-over time, but
are rather weak, simply smooth things out at the small scales, per-
forming a sort of micro-mixing. Very close to the walls, however, the
turbulence is suppressed, and the burden of transporting the heat falls
to a combination of molecular diffusion and turbulent advection by
small eddies. Thus wall regions tend to be resistant to turbulent heat
transfer. The central question which concerns us here is: can we
predict the influence of a (statistically) prescribed field of turbulence
on the rate of heat transfer near a wall? Let us start with the heat

equation.
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4.5.1.1 Turbulent diffusion of heat and the
gradient-diffusion approximation
The advection—diffusion equation for heat is

DT —
o aV?T, T=T+T (4.60)

where T and T’ are the mean and fluctuating temperatures. We can
understand the origin of (4.60) more readily if we rewrite it as,

%(pcpﬂ — V.(q), q= kVT (4.61)

where q is the heat flux density associated with molecular diffusion, k
is the thermal conductivity, and ¢, the specific heat. Expression (4.61)
comes from equating the rate of loss of thermal energy from a lump of
fluid of fixed volume dV to the rate at which heat diffuses out of the

lump as it moves around,

B(pcpTéV)—fq-dS— V.qdV = -V .qoV.
Dt 8s oV

Dividing through by 0V brings us back to (4.61). (We ignore here the
contribution to (4.61) which comes from the viscous generation of
internal energy since it is usually negligible.) Now suppose u and T are
statistically steady. Then (4.60) yields

u-V{pe,T) = —V - (—kVT + pe, TW). (4.62)
We might rewrite this as

u-V(pe,T) =~V -(qr) (4.63)

q; = —kVT + pc, TW (4.64)

where qr is now the turbulent heat flux density which includes both
molecular conduction and turbulent mixing. The turbulent term, T,
which has arisen from the averaging process, is clearly analogous to
the Reynolds stresses which arise from averaging the momentum
equation.

We are now faced with the problem of estimating T'w. One

approach, which has much in common with the Prandtl-Boussinesq

R

i is to write

approximation for ©

Tv = —o VT (4.65)

so that (4.64) becomes
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W VT = V- [(o  %)VT]. (4.66)

Thus the net effect of turbulent mixing is, in this model, captured by
bumping up the thermal diffusivity from o to o + o,. An estimate of
the form

T = —o, VT

is known as a gradient-diffusion approximation and o, is called the
turbulent diffusivity. The idea here is that, on average, turbulent
mixing will tend to eradicate gradients in mean temperature, just as
molecular diffusion does, and the higher the gradient in T, the more
vigorous the heat transfer by mixing will be. (Actually, we could
regard (4.65) as simply defining o,.)

Let us now return to the simple case shown in Figure 4.23(a). If the
flow is statistically independent of x and z then (4.63) and (4.64) tell
us that

|| = g7y = constant

oT —
dry — —ka—y -+ pcpT uy.

Molecular conduction is usually negligible except near the boundaries
where the turbulence becomes somewhat muted. Thus, in the core of
the flow, we have

Y p— —
T'w}, = constant = qry/ pcp.

If we invoke the gradient-diffusion approximation this becomes

d1 cant /
o — — —
‘D constan qry/ Pcp

and the mean temperature profile T(y) can be calculated provided that
o, (which could be a function of y) is known. There are several ways
forward at this point. One approach, called Reynolds analogy, relies
on the fact that the same eddies which are responsible for the trans-
port of momentum are responsible for the transport of heat. So we
might make the approximation of o, = v, which yields

gy OT/dy
GHTx, - Om /Oy’

(4.67)

So if #,(y) and ff:y(y) are known, this allows us to determine the
relationship between qr, and T(y).
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An alternative approach is to invoke a mixing-length type argument
and write o, =u'l,, where u”? = (u;)z and l,;, is a mixing length. This
amounts to the assertion that

T’u; = — [W} l/zlm?j—f.

Actually this is nothing more than a definition of [, transferring the

problem to one of determining the mixing length. Now presumably
the magnitude of I, at any one location is of the order of the mean
size of the large eddies at that location. We might expect, therefore,
that [,,, will be a function of y, since the average eddy size gets smaller
as we approach the boundaries. So, in line with simple mixing-length
theory, we might anticipate that [,, = ky near the lower boundary,
where K is Karman’s constant, and that L, is approximately constant in
the core of the flow.

These kind of naive mixing-length arguments tend to work well for
simple shear flows, of the type shown in Figure 4.23(a), and also close
to relatively flat boundaries. For more complex geometries, however,
the entire gradient-diffusion approximation should be regarded with
a certain amount of caution. Nevertheless, we have already noted that
most of the thermal resistance to heat transfer tends to come from the
near-wall regions, and so mixing-length arguments can indeed be
useful. Near the lower wall in Figure 4.23(a) our mixing-length model
yields the following relationship between g, and 0T/0y,

oT

qry = —pcpu';cya— :

So, if we know u(y) we can determine the distribution of the mean
temperature, T(y), near the boundary.

Example 4.8 Consider the near-wall region in Figure 4.23(a) where
uw' ~V, l=xy, and ii,/V, =k ' Iny" + A. Show that the mixing-
length equation above leads to,

F T* Kt

AT Ty —T(y) _ iln[v*y
o

) i

where K1 and Ar are dimensionless coefficients, Ty is the wall tem-
perature at y =0, and

qr

T =
P Ve

Now show that Reynolds” analogy (4.67), leads to precisely the same
result, though with the restriction that k= k, the Karman constant.
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4.5.1.2 The law of the wall for temperature

The appearance of a log-law of the wall for temperature in Example 4.8
is intriguing because of its similarity to the log-law for velocity.
However, one might ask if this is a truly genuine result or just an
artifact of the mixing-length approximation. Actually it turns out that
the appearance of a log-law of the wall for temperature is not coin-
cidence. In fact, following arguments analogous to those leading up to
(4.44) we may show that, when V,y/o is large, yet y/W is small, the

expression
AT 1 [V
20 [_*y} 1Ay (4.68a)
T* Kr o

is a dimensional necessity. (W is the channel width.) This is an
important equation as it constitutes one of the few rigorous results in
turbulent heat transfer. The coefficient x4 is a universal constant,
with a value of ~0.48, while Ay is a function of the Prandtl number,
Pr=v/o. (See Landau and Lifshitz 1959, for the first rigorous
derivation of this law or, say, Bradshaw and Huang 1995, for a more
recent account.) The fact that x4 has a value close to the Karman
constant lends support to Reynolds analogy.

This log-law must be matched to the near-wall region where heat is
transported by conduction alone. Here we have AT = gy/pc,, which
may be rewritten as

AT/T" = Vuy/o.

It is the process of patching together these two expressions which
determines Ay and fixes its Pr dependence (Figure 4.23(b)). That is,

Apr = yr — K;l lIlyT

where yr is the value of V,y/o at which the linear and log-laws
intersect.

Let us see if we can determine Ay (Pr) through this crude matching
process. It is found that the thickness of the conduction dominated
region, that is, y, is sensitive to the value of Pr. For Pr of the order of
unity, yr is more or less set by the thickness of the viscous sublayer,
y* ~ 5, which gives y;~ 5. This estimate of yy-is also found to hold for
Pr <1 (highly conducting fluids). So, in a low-Pr fluid, the near-wall
conduction zone is thicker than the viscous sublayer, the ratio of the
two thicknesses being Pr '. In such cases diffusion remains the
dominant heat transfer mechanism up to a distance of the order of
yt ~5Pr ! from the wall. (For liquid metals, where Pr is extremely
small, this can extend right into the core of the flow, so that turbu-
lence has little impact on the bulk heat transfer.)
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For large values of Pr, on the other hand, the transport of heat by
conduction is very inefficient and the low levels of turbulence found in
the viscous sublayer dominate the heat transfer throughout much of
this region. In such cases the conduction-only layer is a small fraction
of the viscous sublayer, and estimating this thickness involves the
delicate issue of characterizing the intensity of the intermittent tur-
bulence very close to the wall. Some authors suggest y© ~ 15 Pr~ " as
an upper bound on the conduction-only region, although Townsend
(1976), offers the alternative estimate of y* ~ 10 Pr "%, We shall stay
with the minus-one-thirds estimate since, as we shall see, it is con-
sistent with the analysis of Kader (1981). Note that this thin insulating
layer can have a disproportionate influence on the net heat flux from
the surface, since it dominates the near-wall thermal resistance. In
summary, then, we have

yr ~ 5, (Pr < 1); yr ~ 15 Prz/z, (Pr > 1)
as illustrated in Figure 4.23(c). This allows us to estimate Ay using
the expression Ay = yr — k7' In yr. In the limits of large and small
Pr this yields:

Ar~16, (Pr<1);  Ar~15P% (Pr>>1).

In practice the experimental data is reasonably well approximated by
the simple curve fit,

5 2
A~ (3 pr'/? —1) , 107%<Ppr< 10"

(Kader 1981), which is consistent with our estimates above. Our log-

law can now be written as

. Y

AT 1 [V
T* Kt

5 2
} + Ar, Ar = 3 (3 pr'/? —1) ) (4.68Db)
o

There are three particular cases of interest. For most simple gases at
room temperature we have Pr~ 0.7 (this is true of He, H,, O,, N,,
and CQO,). In such cases

T R
T

AT 1 [V
o

+4.6, (Pr=0.7)
|

which is very close to the velocity profile
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”———m[ﬂ} 1A AxSS
Ve K v



ux
/-/\/;;\/‘G
(\/\f/\ ,m/:’}AT
> S O
IR T o (T G
NN

Figure 4.24 Heat transfer in a boundary
layer.

Heat transfer in wall-bounded shear flows — the log-law revisited

For poorly conducting fluids, on the other hand, such as engine oil
(Pr~ 10" or ethylene glycol (Pr~ 200), we have

AT 1
AT _m[
T* KTt

Viy
o

} +15Pr??,  (Pr>>1)

*/? term means that the temperature drop here

The inclusion of the Pr
is much larger than that of a Pr~ 1 fluid. This reflects the fact that,
when Pr>> 1, there is a highly insulating region adjacent to the surface
where conduction is the only mechanism of transporting heat. Finally,

for highly conducting fluids (liquid metals), we have,

1 \% 5
——m[ﬁ} +2, (Pr<1)
T* Kt o 3

Note that this expression is independent of v, as it must be, since
virtually all of the transport of heat is by conduction, even in the fully

turbulent region.

4.5.1.3 Heat transfer across a boundary layer
Let us now turn our attention to boundary layers (Figure 4.24), rather
than the channel flow of Figure 4.23(a).

In texts on heat transfer it is conventional to characterize the heat
transfer across a turbulent boundary layer in terms of the parameters

St = q—TAT (Stanton number)
Pt
Ty 2V?
g = ————=—> (Friction coefficient).
f 2 2
(1/2)pu?, 2,

Here u,, is the velocity external to the boundary layer and AT is now
the net temperature drop across the layer. If it is assumed that the log-
law can be applied throughout the boundary layer, which is a rea-
sonable approximation for flat-plate flow without a pressure gradient,
then our log-law can be rewritten in terms of St and ¢x After a little
algebra we find,

Cf/Z

St= .
(/1) +(ep/2) 2 [(1 frer Y n(Pr)+(5/3) (3Pr/*—1)* (i /11 ) A]

(This is left as an exercise to the reader.) The expression involving Pr is
somewhat messy and, since part of it has its origins in a curve fit, it
makes sense to replace it by a simpler function of Pr. For the range of
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Figure 4.25 (a) Turbulence generated by
both shear and buoyancy, (b) The atmo-
spheric boundary layer. This is schematic
only. In practice the inner region is only a
small proportion of the over-all boundary
layer and the log region begins at an altitude
which is many multiples of the roughness
height k.

I70

values of Pr encountered in practice (other than in liquid metals)
a reasonable approximation is

cr/2
St = f/ , Pr>0.7.

k/kr+ (cr/2) 2 [13 Pr/ —12]

A number of empirical expressions very similar to this are used in
engineering for heat transfer calculations in flat-plate boundary layers
and in pipes (Holman 1986).

4.5.2  The effect of stratification on the
log-law—the atmospheric boundary layer

So far we have ignored the influence of T on wu, via the buoyancy
force, and focused simply on the transport of heat by some pre-
scribed set of velocity fluctuations. Let us now consider the reverse
problem. Suppose that we have a turbulent shear flow over a rough,
hot surface and that there is a prescribed flux of heat, gr, away from
that surface (Figure 4.25(a)). We are interested in how the buoyancy
force associated with the hot fluid perturbs the mean and turbulent
velocity fields. We adopt the so-called Boussinesq approximation for

@ |
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the buoyancy force in which changes in density are sufficiently small
for p to be treated as a constant, except to the extent that there is
a buoyancy force, dpg, per unit volume. We may rewrite this
as —pP(T—Tyg where f is the so-called expansion coefficient,
B=—@dp/dT)p~', and T, is a reference temperature representative
of the ambient temperature.

4.5.2.1 The atmospheric boundary layer

The flow shown in Figure 4.25(a) is, perhaps, most relevant to the
atmospheric boundary layer (ABL) and we now shift our attention
to such flows. However, before embarking on a detailed analysis,
perhaps we should say something about this boundary layer.
(See Garrett 1992, for more details.) The ABL constitutes that part
of the atmosphere where the direct effects of ground friction and
surface heating (or cooling) are felt. It differs from more conven-
tional boundary layers in at least two respects: both buoyancy and
Coriolis forces are important. The ABL, which may be between
0.5km and 5km deep, is conventionally divided into two regions.
The upper 90% of the layer is called the outer or Ekman layer.
Here the Coriolis and pressure forces are dominant and the details
of the ground cover (be it a corn field or a forest) is unimportant.
Conversely, in the lower 10% of the boundary layer, called the
inner layer, the Coriolis force is relatively unimportant but the flow
is sensitive to the level of surface friction. In the inner layer
the mean horizontal shear stress may be treated as more or less
constant (independent of y) and so, in the absence of buoyancy
forces, the mean velocity satisfies the conventional log-law (see
Section 4.2.4),

o
2 _mH
Vi K Yo

Here vy, is the surface roughness parameter which characterizes the
height, shape, and packing density of the surface irregularities. (For
sandgrain-type roughness y, ~ 1%/ 30, where k is the rms roughness
height.) Of course, this universal law does not apply immediately
adjacent to the surface (y ~ k) where the details of the flow depend
crucially on the precise geometry of the ground cover. Measurements
the mean velocity profile suggest that typical values of y, are as follows:

sand or soil; y, = 0.001m — 0.005 m
grass; ¥y, = 0.002m — 0.02m
various crops; 3y, — 0.02m — 0.1m
woodland and bush; y, =02m — 0.5m
suburbs; y, ~ 0.5m

temperate forest; 3y, = 0.5m — 0.9m
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By comparison, the viscous sublayer on an imaginary smooth ground
would be only a fraction of a millimetre thick!

The turbulence intensity in the atmospheric boundary layer
depends crucially on the nature of the buoyancy forces. These may be
stabilizing (hot air over cold air), destabilizing (cold air over hot air),
or neutral (negligible buoyancy forces). Neutral conditions tend to
correspond to windy conditions and complete cloud cover. Unstable
conditions are common during the day when the ground heats up by
solar radiation, while stable conditions are more common at night as
the ground cools via long wavelength radiation. One of the central
questions in ABL theory is: can we parameterize the influence of the
buoyancy forces on the mean and turbulent velocity fields? It turns out
that this is most readily investigated through a consideration of the
rate of working of these forces. For simplicity, we shall restrict our-
selves to the inner layer where the Coriolis force may be neglected.

For a perfect gas it may be shown that and f =T, so, in the
atmosphere, the buoyancy force per unit volume is —p[(T — Ty)/
Tolg.'* Let us write §=T— T,. Then the rate of working of the
buoyancy force in a one-dimensional shear flow of the type shown in
Figure (4.25(a)) is

(H_M;) pg/To = qrg/cyTo.

Equation (4.18) may be modified to incorporate this energy source.
For a one-dimensional shear flow this equation yields

0— — |, —— Oy [+ —

0= 5 [P W | rehget (7) pa/ Ty~ 2005}

0= (redistribution of KE) + (shear production of KE)
+(buoyantproduction of KE) — (dissipation of KE).

The first term on the right merely redistributes turbulent kinetic
energy without creating or destroying energy. Evidently we have two
net sources of turbulent energy, T3 0t /Jy and (0u])pg/T,, the sum
of which is ultimately matched by the small-scale viscous dissipation,

ZpV(Sfj)z. This simple energy equation forms the basis of most phe-
nomenological models of buoyant shear flows.

" This estimate of B comes from the ideal gas law on the assumption that fluctua-
tions in density are due exclusively to fluctuations in temperature, and that changes in p
due to pressure fluctuations may be neglected. One consequence of this approximation
is that unstable stratification (heavy fluid overlying light fluid) correspond to dT/dy < 0.
In fact, a more careful thermodynamic analysis reveals that instability actually corre-
sponds to dT/dy < —G,, where G, = (y — 1)¢/VR is called the adiabatic temperature gra-
dient. (Here y is the usual ratio of specific heats and R the gas constant.) However, in the
atmosphere G, is of the order of 1°C/100 m, which is small, and so our approximation is
reasonable.
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4.5.2.2 The case of small wind shear: Prandtl’s theory

The case where the shear is very small deserves, perhaps, particular
attention. Here the generation of turbulence by buoyancy is more or
less matched by the viscous dissipation, and so

qrg/cyTo ~ pe.

In addition, the mixing-length estimate of g1 yields

ar —(u'l) ot ~ 0"
Pep Oy

where 6’ is some suitable measure of the fluctuations in 6 =T — T,
and [ is the mixing length. Now suppose that the buoyancy force does
not significantly alter the conventional energy cascade. Then the
dissipation per unit mass can be estimated as & ~ (#')’ /1 and we may
combine the estimates above to yield,

aT To MG

N ——

qar /oy /
u un ay g l

Pl

Near the surface y — 0 we might expect the size of the eddies to grow
as [~y and so our estimates lead to the often quoted expressions
(attributed to Prandtl)

1/3 —1/3
T
i~ <Q_T> <_°) y'/3 (4.69)
P Kg
2/3 1/3
g ~ (q_T) <E) y—1/3 (4_70)
P Kg

dT 2/3 T 1/3

w6 (5 (a.71)
dy Pep Kg

dT /dy| is found to decrease a little faster than y *?,

In practice,
perhaps as y~'”, thus raising doubts about the assumption that I ~ Ky,
which is strictly true only in simple, neutrally buoyant shear flows.
Actually, there is some difference of opinion in the literature as to
the accuracy of (4.69) — (4.71). Monin and Yaglom (1975), provide
considerable evidence in support of these expressions, while
Townsend (1976), suggests that |[dT/dy| ~y~? rather than y *°.
Wyngaard (1992), tends to come out in favour of Monin and Yaglom,
while the data reproduced in Garrett (1992), suggests. |dT/dy| ~ y~'7.
The variation of the observed exponent in y" may be explained in part
by the fact that atmospheric measurements in the absence of a wind
are hard to obtain. Moreover, there are theoretical reasons for sus-
pecting that, in the absence of any shear, there is a y~* layer nestling

between the y *'? region and the boundary (Kraichnan 1962).
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4.5.2.3 The case of finite wind shear: the Monin—-Obukhov theory

Let us now return to the more general case where both shear and
buoyancy are important. The ratio of the rate of production of energy
by these two forces is given by the so-called flux Richardson number, Rg:

0u,
szié y 8 qr

To (g )om oy PTo (i ) om0y

(4.72)

Note that it is conventional to define R¢ so that it is negative for an
upward transfer of heat and positive for downward transfer. When R¢
is large and negative the primary source of turbulence is the buoyancy
force, while a small, negative R¢ implies that buoyancy is negligible.
The third case, of 0 < R < 0(1), corresponds to a stable stratification of
T, and thus to a partial suppression of turbulence. Now recall that we
are restricting attention to the near surface region of the ABL, which
may be, say, ~100m deep. Here 1, is constant and equal to pVi. If
the velocity profile is logarithmic, 0u,/dy = V./(xy), as it would be

in the absence of buoyancy, then (4.72) reduces to,

_ (To/xg)V?

Ry ==, L= .
(QT/pCp)

(4.73)
The quantity L, called the Monin—Obukhov length, plays a central role in
atmospheric flows (Monin and Yaglom 1975). Typically |L| is a few
tens of metres. For heights much less than |L| buoyancy is relatively
unimportant as far as the generation of turbulence is concerned, while
for y>> |L|, the generation of turbulence by shear is negligible and
buoyancy dominates. One of the nice things about L is that it is
effectively determined by just two parameters, V, and ¢r. As with Rg,
a negative value of L indicates unstable stratification (enhanced tur-
bulence) and a positive value of L signifies stable stratification (sup-
pression of turbulence). When L is large and positive an interesting
situation arises where the suppression of turbulence is only partial at
low altitudes (because y/L is small) but more complete at higher
altitudes, where y/L is large. In such cases the turbulent mixing is
most intense near the ground.

Monin and Yaglom (1975) have suggested that, in general, near-
surface (i.e. constant shear stress) atmospheric flows may be char-
acterized by the expression

8ﬁx Vi
Dy wy d(y/L)

where ¢ is the correction to the log-law introduced by buoyancy. This
has turned out to be a profitable strategy in as much as the use of
the normalized variable y/L has proven to be an effective way of
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compacting the experimental data for (0u./dy)(ky/V.) in atmo-
spheric flows. Let us see if we can estimate ¢.

When y < |L|, so that the buoyancy force only mildly perturbs the
boundary layer, it is found that buoyancy effects can be taken into
account by modifying the usual form of the log-law with a linear
correction term. The modified version, valid for positive or
negative L, is

i
A [ln(l> +y2}, y < ||
Vi K Yo L

where y, is the surface roughness parameter and y is a constant. We
can also write this as

O _ Ve [1+ y} < L
oy wyl il

which effectively fixes ¢ for small |y/L|. Estimates of 9 vary con-
siderably, but typically y lies in the range 3 to 8 with data corres-
ponding to negative L tending to give lower values of y (Monin and
Yaglom 1975). Thus #u, changes less rapidly with height in unstable
conditions (L < 0), due to increased vertical mixing, and more rapidly
in a stable environment (L > 0).

Let us now consider the case of unstable stratification in which
y > |L|. In such a situation the generation of energy is dominated
by the buoyancy force, the mean shear having negligible effect on
the energy budget. So we may return to (4.69), which gives us
the estimates,

W~ Vy/IL)' Ty,

If we believe in the phenomenology of an eddy viscosity this suggests,
v~ Wl V(L) iy

where v, is defined via the relationship

Oy

dy

Tiy/P:Vi:Vt

This yields an expression for the gradient in mean velocity,

O, Vilfy /3
gNK_y m ) }’>>|L|

which might be compared with the equivalent expression for
small, y/|L|,

s _ Vs [1+ y} < |L|
&y wyl ik
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Evidently both of these estimates of the mean velocity gradient con-
form to the Monin and Yaglom equation

Vs
Dy = K—y¢(y/L)-

This is as far as heuristic physical arguments will get us. We must now
revert to empiricism to pin down the form of ¢ for intermediate
values of y/L. Numerous semi-empirical expressions for ¢ have been
suggested over the years. A typical prescription is

d(0) ~1+7¢, 0< (<02
PO~ 1B, (<o

where estimates of y lie in the range 4 to 8, while those of § vary from
5 to 14. Of course, this could be interpreted as a crude interpolation
between our various theoretical estimates. (Note that an exponent
of —1/4 is often used instead of —1/3 in the expression for ¢(()
for { <0.)

4.6 More on one-point closure models

We now return to the subject of ‘engineering models’ of turbulence:
that is, closure schemes which seek to predict the Reynolds stresses
and thus allow the mean flow to be calculated. These are referred to
as one-point closure models as they focus attention on 'Eﬁ, which relates
to just one point in space, rather than Qyj, which relates two points in
space. (We shall discuss two-point closure models in Chapters 6 and 8.)
Two of the most popular closure schemes are the k—¢ model (and its
relatives) and the so-called Reynolds stress model. We start with the
k—& model.

4.6.1 A second look at the k—& model

We introduced this scheme in Section 4.1.4 of this chapter. Like
Prandtl’s mixing length, it is an eddy-viscosity model, and assumes

that '55. is related to the mean strain rate S;; by
& — 2005, (p/3)<u§eu§6) 5. (4.74)

As noted earlier, three weaknesses of the eddy-viscosity hypothesis are:

1. T? and Ej are related by a scalar, v, and not a tensor, which is
unlikely to be valid in strongly anisotropic turbulence.
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2. If Ej =0, or else the mean flow is a one-dimensional shear flow,

then (4.74) predicts (u.)* = (u;)z — («)%, which is not, in general,

found to be the case.

3. There is an implicit assumption that ’ES is controlled by the local
rate of strain in the mean flow, and not by the history of the
straining of the turbulence. This will lead to erroneous results in
those cases where the turbulence is subject to rapid straining by the
mean flow, so that the shape of the eddies, and hence the mag-
nitude of the Reynolds stresses, depend upon the immediate his-
tory of the turbulence.

Let us now explore these three potential flaws in more detail. An
example of the first difficulty arises in stratified flows where the
buoyancy force tends to suppress vertical fluctuations in velocity.
Consider, for example, a jet or wake evolving in a stratified medium.
The turbulence in the jet soon becomes anisotropic and there is no
reason to suppose that the relationship between the Reynolds stresses
and the mean shear is the same in the horizontal plane as it is in the
vertical plane. Similar problems arise when strong rotation or intense
magnetic fields are present. Both of these can induce severe aniso-
tropy, with the large eddies being elongated in the direction of the
rotation axis or in the direction of the magnetic field.

As an example of the second difficulty above, consider the turbu-
lence created by a grid in a wind tunnel (Figure 4.26). Here the mean
flow is uniform and so S;; = 0. Nevertheless, turbulence produced by
a biplane grid tends to be anisotropic just downstream of the grid,
with the cross-stream fluctuations being ~10% smaller than the
streamwise fluctuations, u, /u)~0.9. This anisoptropy is very per-
sistent. Indeed, if we track the turbulence for quite some distance
downstream of the grid, so that its energy has decayed by a factor of
20 or 30, we find that there is still an observable difference between u |
and u| of around 5% (Townsend 1976). Yet all eddy-viscosity models
would have us believe that the turbulence is isotropic, since Sj; is zero.
Of course, you might say: ‘who cares about a 10% error, there are
more important issues at stake’, and you would be right. However, it
is possible to create even stronger anisotropy in a wind tunnel and,
despite the absence of shear, it displays the same stubborn persistence
seen in ordinary grid turbulence. One such experiment is described
by Townsend (1976) in which grid turbulence is made to pass
through a sequence of fine wire gauzes. The resulting flow has an
anisotropy factor of u,/uj~1.3. In the experiment the flow was
tracked downstream to the point where its kinetic energy had fallen
by a factor of 3. There was no discernable decrease in
u, /u. Now it is probably true that, if left to itself for long enough, a
cloud of turbulence will become increasingly isotropic due to the
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Figure 4.26 Turbulence induced by a grid.
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random mixing of vorticity. However, these simple wind-tunnel
experiments tell us that this can be a surprisingly slow process. So the
assumption that, when S; = 0, the turbulence is isotropic is not, in
general, realistic. A similar problem arises in the one-dimension shear
flow, W = (i, (y), 0,0) where, once again, the eddy-viscosity hypoth-

esis gives (u.)” = (u;)z = (u)?, yet experiments suggest that these
three contributions to the kinetic energy are unequal. (See Section 4.1
of this chapter.)

Let us now turn to the third weakness of the eddy-viscosity
hypothesis: it is assumed that ’L‘f.} is completely determined by the local
strain-rate in the flow, and not by the history of straining. Is this
reasonable? Consider a simple shear flow, W = (u,(y), 0, 0), uy(y) = Sy.
As discussed in Section 4.1 of this chapter, this may be divided up into
an irrotational straining motion plus one component of vorticity:

= 2(Sy, Sx,0) +1(Sy, — 8x,0)
® =0 — Se,
Sy =138 +0

The principal axes of strain (the directions of maximum rate of
straining) are inclined at 45° to the x—y axes, as shown in Figure 4.21(a).
Now imagine that a cloud of turbulence (i.e. a tangle of vortex tubes)
is introduced into the mean flow at t=0. We suppose that
the turbulence is initially weak in the sense that |@’| <S. It seems
plausible that the turbulent vortex lines will, on average, tend to be
stretched along the axis of maximum positive stain, as shown in
Figure 4.21(b). This stretching process transfers energy from the mean
flow to the turbulence since the elongation of a vortex tube increases
its kinetic energy. Moreover, the inclined vortex tubes are particularly
effective at generating the Reynolds stresses ‘c . To see why, consider
a coordinate system (x*, y*) inclined at 45° to the (x, y) axes, with x*
parallel to the maximum rate of straining. In terms of these coordi-

nates we have

o Ok

(See equation (4.47).) So vortical structures which lead to |u;* > |l
. . . . R . .
produce a significant contribution to 7, , and this is exactly what

a vortex tube inclined at 45° to the mean flow achieves.
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Of course, this discussion is more than a little heuristic. In parti-
cular, we have ignored the rotational contribution to u, which will
tend to rotate the vortex lines in a clockwise direction. Still, it seems
plausible that the magnitude of fi{y will depend on the instantaneous
structure of the tangle of vortex tubes and that this, in turn, will
generally depend on the history of the straining of the turbulence.

In the eddy-viscosity hypothesis the turbulence is allowed no
memory. The magnitude of ’L'f:y and hence the statistical structure of
the vortex tubes, is assumed to depend only on local gradients in the
mean flow. It is as if we have assumed that the turbulence at any one
point has relaxed towards some sort of statistical equilibrium which is
governed by the local conditions alone. In Figure 4.21, for example,
this equilibrium is a balance between turbulence induced mixing of
the vortex tubes, the teasing out of the mean-flow vorticity by the
turbulence, the tendency of S,, to stretch the turbulent vortex tubes,
and the tendency of ® to rotate them.

The notion of a statistical equilibrium governed by local conditions
would be plausible if the timescale for the turbulent fluctuations, k/¢,
were rapid by comparison with the mean-flow timescale. However, it
is the large eddies which contribute most to ‘55, and these usually have
a turn-over time comparable with the inverse of the mean vorticity. So
we are not, in general, at liberty to ignore the memory of the tur-
bulence. This limitation of the eddy-viscosity hypothesis is likely to be
particularly damaging when the mean flow subjects the turbulence to
Sijlk/e > 1.

All in all, it would seem that the eddy-viscosity hypothesis must be

rapid, irrotational straining, that is,

regarded with caution. Of course, the three shortcomings listed above
are all interrelated. For example, the third shortfall amounts to an
assumption of no memory, and this lack of memory also characterizes
the second limitation since, in the absence of mean shear, the
turbulence will head towards an isotropic state. Perhaps the main
point to emphasis, however, is that any model based on (4.74) must be
subject to suspicion in circumstances where: (i) the turbulence is
strongly anisotropic; or (ii) the turbulence is subject to rapid irrota-
tional straining.

So far, the k—¢ model does not seem to be fairing too well, and we
have not yet detailed all of the ad hoc modelling which goes into
predicting the eddy viscosity at each point in the flow. It is all the
more surprising, therefore, that the k—¢ model has turned out to be
moderately successful. With only five empirical constants at its dis-
posal, constants which are fixed by certain standard flows, the k-¢
model seems to provide passable estimates of the Reynolds stresses
under a wide range of conditions. Given that it is particularly easy to
implement, perhaps it is not so surprising that it has become the
standard closure model for routine engineering calculations. So let us
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now set aside the limitations of the eddy-viscosity hypothesis and
detail the main features of the k-¢& model, the primary function of
which is to provide an estimate of the eddy viscosity at each point in
the flow.

Since we are assuming that it is the local conditions which deter-
mine 'Ef}, we would expect v, to be determined by the characteristics of
the large eddies at the point in question. We are also excluding severe
anisotropy, and so these eddies are presumably characterized by
a single velocity scale, Vr, and a single timescale 1, say the eddy turn-
over time. So we have v, =f(V, 1) and the only dimensionally con-
sistent possibility is,

vy~ V%‘C.

It is conventional to take the turbulence kinetic energy to represent V%

and so our estimate can be rewritten as
_1/..1\2
v, ~ kr, k=3 (u)". (4.75)

The implication is that the more energetic the turbulence, the higher
the momentum exchange by turbulent fluctuations. Let us now
introduce three alternative ways of writing (4.75). The vorticity of the
large scale eddies, which we will denote , is of the order ' and so
we could write,

v~ kjo. (4.76a)

Alternatively, we could note that T ~ 1/ V; where [ is a measure of the
size of the large eddies. This leads to

v ~ k2L (4.76b)

Finally we recall that the rate of destruction of turbulent energy, &, by
small-scale viscous forces is of the order of k*/?/1, and so we could also
propose

v~k /e. (4.76¢)

All three estimates (4.76a—c) are essentially saying the same thing and
it is, perhaps, a little arbitrary which we adopt. Partly for historical
reasons the engineering community has, by and large, plumped for
(4.76¢). So in the k—& model we write

v = cuk’/e (4.77)

where ¢, is a constant (c,~0.09), and then specify semi-empirical
transport equations for k and ¢. Relatives of the k—& model work with k
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and [ or else k and w. Conceptually there is a little difference between
these different schemes, and so we shall stay with the k-¢ model as it is
the most popular. As discussed in Section 4.1.4 of this chapter the
transport equation for k is based on the exact energy equation (4.29),

%+u -V(k) =—V - [T] + (’C?/p)@-j —& (4.78)
where T involves unknown correlations such as w'p’ and w'uu]. The
key modelling step here is to assume that the influence of the triple
correlations and pressure-velocity correlations is to spread the tur-
bulence energy in a diffusive manner from regions of high intensity
fluctuations to regions of low intensity. Specifically, the k—& model
proposes

T = —o,Vk

where o, is some unknown diffusivity, normally taken equal to v,. The
transport equation for k then becomes a simple advection—diffusion

equation containing a source term, T?Sij, and a sink term, &. It is

o _
5 Hu V) = V- [ VH + (rg /p) 5 e (4.79)

Sometimes this is written in the more general form

% +a-V(k) =V [(v+uv/o) VK] + (rf;/p)@j —¢  (4.79b)

where oy, is a constant. This gives greater freedom in the choice of the
diffusivity o,. In practice, however, a;, is nearly always set equal to
unity. Note that, in homogeneous turbulence, the divergence on the
right of (4.78) and (4.79) is equal to zero and in such cases our ‘model
equation’ is exact. The & equation, on the other hand, is pure

invention. It is

e B v Ge &
E‘FU-V(B)V'<<I/+O_—£)VS>+C1?—C2? (4.80)

where G = (TS / p)gij and o, c;, and ¢, are tunable coefficients which
have been set to capture a range of standard flows. The values of o,

¢y, and ¢, are usually taken to be
g, = 1.3, ¢ = 1.44, ¢, =1.92.

At this point cynics might protest: “This is pure empiricism! How can
an entirely fictional equation, plucked out of thin air, and forced,
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through the judicious choice of some arbitrary coefficients, to repro-
duce one or two laboratory results, possibly hope to anticipate
the evolution of a wide range of flows? The extraordinary thing,
however, is that, by and large, it works reasonably well, at least much
better than it ought to. So perhaps there is more to (4.80) than meets
the eye. Perhaps there is some underlying rationale for this equation.
In retrospect, it turns out that there is.

One interpretation of the & equation is given by Pope (2000). It
goes something like this. The turn-over time of a large-scale eddy is
~l/ur~k/e, since ¢ is of the order of u’/l. Thus the characteristic
vorticity of the large, energy containing eddies is, w ~&/k. Now
consider a one-dimensional, homogenous shear flow in which
= u,(y)é,, Ou,/0y=3S. The vorticity of the energy-containing
eddies comes from a distortion of the mean-flow vortex lines (they get
pushed out of shape by the turbulence) and so we would expect that,
after a while, o will settle down to some value of the order of S, say
@ = S/A. (Table 4.1 in Section 4.1.3 suggests the value of 4 is 6.3.) If
the initial value of w is different to S/4 then we might expect @ to
relax towards S//1 on timescale of S™'. A heuristic equation which
captures this behaviour is,

9 gl -], ook (4

The k—e model, on the other hand, would have us believe,

dk

—=G—¢

dt

de  Ge &
i Tk %

G =1, 8" =, kS’

for this simple, one-dimensional shear flow. However, these may be
rearranged to give

d
d—C: = (a1 — 1)euS — (e; — Vo, ©=z¢fk.

Of course, this is the same as our heuristic model equation (4.81), with
@ =(c,— 1) and a*/1* = cu(c; — 1). Thus, provided ¢, and c, are both
greater than unity, the particular form of the & equation used in the
k—& model ensures that the large-scale vorticity behaves in a plausible
manner in homogeneous shear flow. Thus we might think of the &
equation as being a transport equation for large-scale vorticity, tending
to push the large-scale vorticity towards that of the mean flow.
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Let us now summarize what we know about the k-¢ model. We
have the Boussinesq equation

Ty /p = 218y — (2/3)kdy (4.82)
combined with a Prandtl-like estimate of v,
v = c,k’/e (4.83)

plus two empirical transport equations for k and &,

ok o U

E‘FH'V(’Q)—V‘ |:(V+O'_k>Vk} +G—¢ (4.84)
Oe B 2 Ge &
EJrU‘V(E)—V' [(u+;8)v.s] +c1?—c2? (4.85)

where G = (Tf} / p)gij. The tunable coefficients are usually assumed to
have the values of

g =0.09; o0, =13, o0pr=1; ¢ =144, ¢ =192

So how does this model fair in practice? Well, there are certain
well-docamented flows against which we may compare the k¢ pre-
dictions. Consider first the free decay of homogeneous, isotropic tur-
bulence in which there is no mean flow, u = 0. The k- model predicts

dk

—_= —c
dt

de &
%

()" = ()" = ()
These may be integrated to give
k=ko(1+t/7) ", n=1(c,— 1) =1.08

where T is proportional to the initial turn-over time, T =nky/&,. In
practice it is found that k decays considerably faster than this, as
k~t " (see Chapter 6), and so the model has not performed parti-
cularly well here. Another failing of the k—& model is that, when u = 0,
it does not distinguish between homogeneous, anisotropic turbulence
and homogeous, isotropic turbulence: both are governed by the same
model equations. In effect, the k—& model assumes that freely decaying
turbulence is always isotropic. Yet we know from studies of grid
turbulence that anisotropy is easily generated (in fact it is hard to get
rid of 1) and that any anisotropy introduced by the grid is remarkably

persistent.
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Next we consider the log-law region of a boundary layer. Here we
know that ‘L'f:y is constant and equal to 7, = pV2. The rate of gen-
eration of turbulent energy is therefore

R - 3
_ Iy Ok Ve

p Oy xy
We have also seen that, throughout the log-law region, Sk/e, k/VZ,
and G/¢ are all more or less constant and equal to

G Sk k ¢Sk
— = 0.91, — 3.2, — = —— 1~ 3.52
P> € V: Ge

where S is the shear 0%,/dy. (See Section 4.2.1.) Given that k is
constant, let us see what k-¢ predicts for the log-law region. The k
equation (4.84) simply reduces to

G=¢
requiring a local balance between the generation and dissipation of
energy. The eddy-viscosity estimate (4.83) then becomes
V2 k*
Vifrky T Vi/Ky

14

which, when simplified, yields
cu= (V)7 (G=2)

Given the measured values of k/V?, this effectively fixes ¢, at ~0.09.
Next we turn to the ¢ equation. Given that ¢ = G = V. /iy, and that
¢, is fixed by the expression above, (4.85) reduces to

ogci/z(cz —c) =«

For specified values of ¢, and ¢, this effectively determines o,. (The
model values of ¢,=1.3 and ¢, — ¢, = 0.48 correspond to K =0.43.)
Thus we begin to see how the various coefficients in the k-& model
can be chosen to reproduce certain standard flows, and in fact the k—¢
model does not do too badly in the log-law region because it has been
tuned to do so.

Let us finally consider a one-dimensional, homogeneous shear flow,
%y (y) = Sy. Here the k—¢ model predicts that the flow evolves towards

a self-similar solution in which,

Sjw =kS/e = [cules — 1)/(c, — 1)] =48

& /(pk) = [culca — 1)/ (e — 1)]*= 0.43
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Gle=(c;—1)/(c; — 1) =2.1.

(Readers can verify this for themselves. A good starting point is the
relaxation equation (4.81) for &/k.) We might compare this with the
wind-tunnel data given in Table 4.1 and discussed in Section 4.4 of this
chapter:

kS/e ~ 6.3
R
T,/ (pk) ~ 0.28
G/e~ 1.7.

Evidently, the k-¢ model somewhat overestimates the ratio of pro-
duction to dissipation, but at least it admits a self-similar solution of
the form: G/e = constant, kS/e = constant. Moreover the discrepancies
between the actual and predicted values of kS/e and G/¢ are more or
less acceptable for many engineering purposes. These results are fairly
typical. In general, the standard k—& model performs well in simple
shear flows (the various coefficients having been chosen to encourage
this), but can go badly wrong in more complex configurations such as:
stagnation-point flows; flows with a rapid mean rate of strain;
boundary layers with a strong adverse pressure gradient or large
curvature; and highly anisotropic turbulence (flows with buoyancy or
strong swirl).

While there are various ways of patching up the standard model on
a case by case basis, this is not entirely satisfactory. Problems also arise
very close to boundaries, where we have to match the k and
¢ equations to the viscous sublayer, which turns out to be a matter of
some delicacy.

The k-¢ model has proved extremely popular in the engineering
community. In part, this is because it is simple to use and provides
reliable results for simple shear flows. Moreover, those situations
where it does not fair so well (e.g. flows with strong rotation or
turbulence which is suddenly subjected to a large strain field) are
now reasonably well documented. So it is an imperfect tool whose
deficiencies are well known. There are many variants of the k-¢
model, such as the k- formulation in which we write w =¢&/k and
transport equations are provided for k and . Each formulation has its
own strengths and weaknesses and these are nicely summed up in
Durbin and Petterson-Reif (2001).

However, one should not lose sight of the fact that the k—& model
and its variants are ultimately highly sophisticated exercises in inter-
polating between data sets. Perhaps we should leave the last word to
the physicist George Gamow, who, in a moment of whimsy, noted,
‘With five free parameters a theorist could fit the profile of an
elephant’ (1990).
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4.6.2 The Reynolds stress model

We now give a brief discussion of the so-called Reynolds stress model
of turbulence. This is, perhaps, the most sophisticated (or perhaps we
should say, complex) of the heuristic models used by engineers to
estimate the influence of turbulence on the mean flow. It is simple
enough to be applied to flows of some geometric complexity, yet
offers the possibility of remedying some of the worst excesses of the
mixing-length or k—¢ models. Like the k—¢ model, it is referred to as
a one-point closure model, as it involves statistical quantities evaluated at
only one point in space. (We will meet so-called two-point closure
models in Chapter 6. These models make a more serious attempt to
emulate the physics of the energy cascade, but are so complex that
they are of limited value in an engineering context.)

The motivation behind the Reynolds-stress model is the inability of
the k—¢ model, or indeed any eddy-viscosity model, to cope with
severe anisotropy in the turbulence, or to allow for a non-local rela-
tionship between ‘C; and 31-]», that is, history effects. So it rejects the
Boussinesq equation and works instead with a system of equations of

the form,
O _ . 0p 0 R
R
i o= R _
@ = () (4.7
%+ (@ Ve = (~). (4.88)

Here the ¢ equation is very similar, though not identical, to that used
in the k-¢ model. (The only difference is that the diftusivity, v,/a,,
appearing in the divergence term on the right of (4.80) is replaced by
an anisotripic diffusivity—see Hanjalic and Jakirlic 2002.) The
R on the other hand, are based on (4.8). In

transport equations for Ty,

principle, such an approach should work better than the k-& model,
since it is not burdened with the restrictions of the eddy-viscosity
hypothesis. Nevertheless, there is still a great deal of ad hoc modelling
involved, in which a variety of tunable coefficients are set to capture
a number of standard flows. So, like the k—& model, it is essentially an
extremely sophisticated exercise in interpolating between data sets.

In moving from k-¢ to Reynolds stress modeling the key new
equation is, of course (4.87). Let us write it out in full. Rearranging the
terms in (4.8) we have,

R

R S O O
Y — R / R J R i
+ Vit =—2 ’Siv— T, —+7T.
ot (u ) ij p ij [ ik 6xk jk 6xk

+pe + 2 [
axk

(4.89)
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where
8u’ 8u
& = 8xk 8xk
and
oy _
Hy = pululu, g, + v —— J 4+ 51kp + Opp'uj.

Oxy,

Since the small scales in a turbulent flow are approximately isotropic
(except close to boundaries), and it is these which contribute most to

&;, we may approximate this tensor by its homogeneous, isotropic

ijs
Counterp art,

& = Sy = 280y (except near surfaces).

Moreover, the viscous term in Hjj is usually negligible by comparison
with the other terms, and so our transport equation for ‘55 simplifies to

ok z O Ou;
i _
P +(u- V)’CU —2p'S; — [ a—kJrfkaxJ+ pedy+V - [Hy]
(4.90)
where
Hy, = pu/u’ufe + p’(éikuj + 5Jvku1’-). (4.91)

Evidently, we have two new tensors which require some sort of
closure approximation: Hz and p’ S’ If these can be modelled in terms
of ‘Cy, g, and u then we have a closed system of equations. In the
simplest of Reynolds stress models the pressure-rate-of-strain terms

are estimated as

2p S' —pPCr— . [mu] 5ij k] + [terms involving the mean strain rate]
(4.92)

where cg is a constant. (Typically cg =1.8.) On the other hand, Hj, is
usually modeled so that the divergence in (4.90) acts like a diffusion
term for % i With an anisotropic diffusivity. (Again, see Hanjalic and
Jakirlic 2002.) This is reminiscent of the modelling of T in the kinetic
energy equation (4.78). For flows in which the turbulence is homo-
geneous the divergence of Hy, vanishes and nature of the closure
assumption for Hy is unimportant. Consequently, it is closure
approximation (4.92) which has attracted most debate. Let us rewrite
(4.92) in the form

ii = —Pcreby + [terms involving Sy] (4.93)
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where

—dy. (4.94)

Two questions now arise: (i) what lies behind (4.93)? and; (i) to what
extent is (4.93) generally applicable? Let us start with the second of
these. The central problem with (4.93) is that p’(x,) depends upon
@ and u’ at all points in the flow, and not just on u at location x,. That
is, from (2.23),

p(x) = ﬁ/ [V ) (u ) Vu)} ax" (4.95)

41 |x — x|

so eddies at all locations contribute to p’ at position x,. In the

Reynolds stress model, however, we try to estimate p'Sj; at x =X,
purely in terms of events at x,, a strategy which is philosophically
unsound from the outset.

Still, let us accept this limitation and try to understand where the
closure approximation (4.93) comes from. The first thing to note is

that b;; and p'S}; are both zero in isotropic turbulence (see Chapter 6)
and so in some sense they represent departures from isotropy.

Moreover, continuity requires that p'S}; = 0 and so this term makes no
contribution to the kinetic energy equation (which is obtained from

(4.89) by setting i =j). Rather, we may think of p'S; as redistributing

energy between the different components (u;)z, (u;)z, and (u;)z, and
it seems plausible that the random pressure fluctuations associated
with p’_S{] will tend to push the turbulence towards an isotropic state.
This is certainly the case in homogeneous shear flow, as we saw in
Section 4.4.2.

To fix thoughts, let us consider freely decaying, homogeneous
turbulence in which U = 0. In such a flow we may use (4.90) to derive

an evolution equation for by. It is

dbyig
dt &k

[bij + (p'_sﬁj/ps)] . (4.96)

Notice that, in the absence of the pressure-rate-of-strain term, by
would increase exponentially on a timescale of &/k; something which
is not observed. So, as anticipated above, the role of p’—S:] is to
encourage isotropy. If we now combine (4.96) with the ad hoc estimate
P'Sj = —pecrby, we find

dbi' &
d—t’ = (cr — 1)by, R ~ 1.8 (4.97)
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So the closure hypothesis (4.93) applied to freely decaying turbulence
predicts that by,

as a result of random pressure fluctuations. For a while this was

which is a mark of anisotropy, is eventually destroyed

thought plausible and so the estimate p’ S' = —pcréb;; has become the
starting point for modelling the pressure-rate-of-strain correlation in
Reynolds stress models. The decline of b; in freely decaying turbu-
lence is sometimes referred to as the return to isotropy, and the coef-
ficient cx is known as Rotta’s coefficient. However, wind-tunnel
experiments involving grid turbulence show that any anisotropy
present in the initial condition is stubbornly persistent, and need not
die away in a time of order I/u. (See Section 4.6.1.) This was nicely
summed up by Bradshaw (1971) who notes: ‘It is curious that vortex
stretching produces isotropy with increasing wavenumber much more
effectively than with increasing time.” All of this suggests we should be
cautious of (4.93) as an estimate of p'Sl, even in the simple case of
homogeneous turbulence with no mean shear.

Now it is clear from (4.95) that p’, and hence p’ S{], will depend not
only on the turbulence, u’, but also on the mean flow. This is why
a second term appears in (4.92) and (4.93). The full closure estimate of

p’ Slfj must therefore involve the mean strain. One approach is to
separate (4.95) into those parts which involve the mean flow and those
which do not. Provided we are well removed from boundaries, so that
(4.95) can be applied without surface corrections, we find

——\ 1
P( )_/axuaxn uu _ull'“]() m

L[y
) oxion T x—w

from which

— v p [0 dx”
Zp’S{j(X) o E Ox! Ox!! S:J( ) |X _ X//l
Lo [ Pm) x) A
) “oxrow T Tk — x|

The two contributions to p’ Si; above are known as the ‘slow’ and
‘rapid’ terms, respectively. It is common to assume that W varies
slowly in space (compared to the turbulent eddies) so that this
simplifies to

> u ) dx" poa, (o)’ dx"
ZP/S/( )= ox!'Ox!" S%(X)|x—x”| +7‘E(9xm ox!! Sij(x)|x—x”|
(slow term) (rapid term)
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We have already seen how the slow term is modelled. The question
now is what should be done about the rapid term. A common

model is:

- er__ 2 N 2
Zp Sij = *,OCRE |:ui1/£]' — géyk} — PCR |:P1J — gGév]

(slow term) (rapid term)

(4.98)

where g is yet another coefficient (typically given a value of 0.6) and

O o 1
+ TR —u/L G = ZP-H.

g
p; — 18 —L .
PEij * e Oy

You might ask why the ‘rapid’ term is taken to be proportional to
Py — %Puéij, but that is another story and we will not pursue it. We
note only that it comes, in part, from assuming that the integral

()" ax'
i

ox!! |x — x”|

can be approximated by a linear function of the Reynolds stress tensor
evaluated at x, so that

o) dx" o
/ ox'" Si{j(x) |X _ X”| ~ Z”?u‘_’['

Certain additional assumptions are then required to reach (4.98).

Let us now summarize what we might call the basic Reynolds stress
model. We have the Reynolds averaged equation of motion

Ow o N O O g
pEJF,O(HV)m—aJFa—xJ[TUJFTU]

To this we must add the Reynolds stress transport equation

oty — o o )
Y — R __ R J R i
at + (11 . V)TU = —prsll-j — [Tika_xk_‘_ ‘L'jk an] —+ pgij —+ a_xk [Hyk]

where the unknown terms on the right are modelled as

2
Sl'j = 5851:]‘,

8‘5?
Hiyp, = 0.2200,; —, i = WGk/ €,
ij O Otij wk/

_ . A ,
29/} = —per . [7#5 — 305k] — pix [Pij —~ gGéiJ} .
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Finally we need a dissipation equation, which is taken to be similar to
(4.85) but with 1,/0, replaced by the anisotropic diffusivity 0.150;:
Oe

_ 0
EJru‘V(B) ~ % [0.15% o

+C1—*CZ—.

de Ge &
k k

The single most important, and controversial, step in the model is the
way in which the pressure-rate-of-strain correlation is handled. It tumns
out that expression (4.98) works well for free shear layers, but has been
found wanting in more complex flows, particularly near surfaces where
major discrepancies arise. Of course, there have been many attempts to
improve on (4.98). For example, it is now common to add wall cor-
rection terms which attempt to model the effects of the anisotropy
found near impermeable boundaries. Also, some researchers advocate

replacing the ‘slow’ term, p’ Sll-j = —pcgeby, which constitutes a linear

relationship between p'Sj; and by, by a non-linear expression of the form

P'Sy = —pere(iby + e (bibje — 3bunbundy)).

(Here cy and c are yet more coefficients.) Analogous non-linear
expressions for the ‘rapid’ term have also been proposed, but these are
extremely complex. All in all there appears to be a bewildering variety
of Reynolds stress models, but a comprehensive review of the various
schemes may be found in Hanjalic and Jakirlic (2002).

Despite the difficulties inherent in modelling the pressure-rate-of-strain
tensor, there are some who think that the Reynolds stress formulation will
provide the basis for the next generation of engineering models of tur-
bulence. Certainly, it has notched up some notable successes in recent
years. Like the k—¢ model, it seems to fair better than cold logic might
suggest. However, it has a rival, called large eddy simulation (LES).

4.6.3 Large eddy simulation: a rival for one-point closures?

In LES we abandon traditional turbulence modelling and resign
ourselves to the task of computing both the mean flow and the evo-
lution of all of the large-scale eddies. In effect, we integrate the Navier—
Stokes equation forward in time, resolving all turbulent structures
(eddies) down to a certain scale. The unresolved eddies, which are
mostly responsible for dissipation, are parameterized using some
heuristic sub-grid model whose function is simply to mop up all of the
kinetic energy which cascades down from the large scales. The
advantage of LES is that we can throw out most of the ad hoc modelling
associated with one-point closure models. Its disadvantages are that it
requires extremely large computation times (compared to one-point

closures), and that it is ineffective near boundaries where the small
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eddies are dynamically important. It seems, therefore, that Reynolds

stress modelling has the edge on LES when computer resources are

limited or else boundaries play an important role in the flow.

LES has long been used in meteorol-
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This unsteady, turbulent flow has become a popular test case for
LES (Rodi 2002). The particular simulation shown below has been
computed using the code FLUENT, employing two different sub-
grid models: the much used Smagorinsky model and another model
which happens to be called WALE. (The details of the sub-grid
models are not important for the present discussion. However, the
reader may wish to consult Chapter 7 for a description of the
Smagorinsky model.)

The time-averaged results obtained by averaging over many eddy-
turnover times are shown in Figures 4.28-4.30 along with experi-
mental measurements. Figure 4.28 shows the mean flow obtained
using the Smagorinsky sub-grid model. The computed reattachment
points upstream and downstream of the cube are 1.18H and 1.78H,
respectively, which might be compared with the experimental mea-
surements of 1.04H and 1.61H.

The time-averaged velocity profiles at x=H, z=H and x= 1.5H,
z=0 are shown in Figure 4.29, while those at x=2.5H, z=0 and
x=4H, z=0 are shown in Figure 4.30. By and large there is good
agreement with the experimental data, although the non-zero
centre-plane values of u, suggest that the simulation may not have
been quite long enough to obtain statistical convergence. Also, the
comparison is only with the mean flow, and not with the turbu-
lence itself.

Of course, one successful computation hardly validates an entire
methodology! Nevertheless, there are several interesting features of
this calculation. First, a conventional finite-difference method was
used (second-order central differences). Second, although the geo-
metry is relatively simple, it does contain much of the physics relevant
to problems of practical interest, such as flow over a group of build-
ings. For example, there are rapid changes in the turbulence level in
the streamwise direction, a stretching of the mean-flow vorticity
around the block, and interactions between distinct shear layers
(Figure 4.31). These are all features which are characteristic of
complex, separated flows around obstacles.

All of this tentatively suggests that LES has the potential to make
predictions of engineering interest and at a cost which may be
acceptable to some sectors of the engineering community. We shall
take up the story again in Chapter 7 where we discuss some of the
problems of LES as well as some of its successes.

This concludes our brief discussion of turbulent shear flows. There
is a truly vast literature on shear flows and one-point closure models,
and despite 70 years of intense study there are still many unanswered
questions and much controversy. Interested readers are urged to
consult the references given at the end of the chapter, which at least
provide a starting point for further study.
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Figure 4.28 Time-averaged flow pattern

calculated by LES using the Smagorinsky

sub-grid model. (Courtesy of F. Boysan and
D. Cokljat, Fluent Europe Ltd.)
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Figure 4.29 Results of the LES. Calculated
and measured time-averaged velocity profiles.
(Courtesy of F. Boysan and D. Cokljat, Fluent
Europe Ltd.)
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Figure 4.30 Results of the LES. Calculated
and measured time-averaged velocity
profiles. (Courtesy of F. Boysan and

D. Cokljat, Fluent Europe Ltd.)

Schematic of flow around

Figure 4.31
a cube.
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Exercises

4.1 Consider an unsteady simulation of flow around a building using
a Reynolds-stress model. Suppose that the mesh is sufficiently fine to capture
much of the vortex shedding, and that only the small-scale turbulence is
modeled by the Reynolds-stress closure. Now consider an LES of the same flow.
Is their any fundamental difference between the two approaches to simulation?

4.2 Show that the transport equation for correlations of order # involves
correlations of order (n + 1).

4.3 Consider a round jet generated by a nozzle of diameter d. The initial
speed of the jet is %,. The fluid into which the jet issues is not stationary, but
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rather moves in the same direction as the jet, at a speed of V < %,. Show how
to adapt the analysis of Section 4.3.2 to describe the evolution of the jet.

4.4 (a) Derive the transport equation for the triple correlations uﬁu}u{e. (b) A
more accurate scheme than the Reynolds stress model might be to model the

various unknown terms in the transport equation for u{-uju’k. Do you think this

is a practical scheme for flows of interest to the engineer?

4.5 Consider a one-dimensional shear layer %, (y) adjacent to a wall. Show
that, if 0p/0x can be neglected, then T, (y) + 75 (y) = constant. Now use
mixing length, with l,=xy, to find %(y). You may assume that T, is
negligible except in the immediate vicinity of the wall. Confirm that
%,/V. = k' Iny+ const., where V, = (rﬁy/p)l/z.

4.6 Estimate the value of V,k /v at which roughness first becomes important
in the log-law for flow over a rough surface. (k is the rms roughness height.)

4.7 Show that, if an incipient hairpin vortex is created by an axial ‘gust’, as
shown in Figure 4.13(a), then the tip of the vortex will rise by self-induction.
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CHAPTER 5

The phenomenology of Taylor,
Richardson, and Kolmogorov

The general pattern of turbulent motion can be described
(according to Taylor and Richardson) in the following way. The
mean flow is accompanied by turbulent fluctuations imposed on
it and having different scales, beginning with maximal scales of
the order of the ‘external scale’ of turbulence 1 (the ‘mixing
length’) to the smallest scales of the order of the distance # at
which the effect of viscosity becomes appreciable (the ‘internal
scale’ of turbulence)...Most large-scale fluctuations receive
energy from the mean flow and transfer it to fluctuations of
smaller scales. Thus there appears to be a flux of energy trans-
ferred continuously from fluctuations of larger scales to those of
smaller scales. Dissipation of energy, that is, transformation of
energy into heat, occurs mainly in fluctuations of scale 7. The
amount of energy ¢ dissipated in unit time per unit volume is the
basic characteristic of turbulent motion for all scales.

Kolmogorov (1942)

We have already discussed Richardson’s idea of an energy cascade as
well as Kolmogorov’s theory of the small scales. Richardson’s
hypothesis says that, in a turbulent flow, energy is continually passed
down from the large-scale structures to the small scales, where it is
destroyed by viscous stresses. Moreover, this is a multi-stage process
involving a hierarchy of vortex sizes. Kolmogorov’s theory, on the
other hand, asserts that the statistical properties of the small scales
depend only on v and on the rate at which energy is passed down the
energy cascade. In addition, it states that the small scales are statisti-
cally isotropic and have a structure which is statistically universal, that
is, the same for jets, wakes, boundary layers, and so on.

These statements cannot be formally ‘proven’ in any deductive
way. The best that we can do is examine whether or not they are
plausible, check that they are self-consistent, and then see how they
hold up against the experimental data. That is the primary purpose of
this chapter. En route, we shall discuss the Richardson-Taylor theory
of turbulent dispersion and also vortex stretching in turbulent flows,
since it is vortex stretching which underlies Richardson’s cascade. We
shall see that the existence of vortex stretching implies that the tur-
bulent velocity field cannot have a Gaussian probability distribution.
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This is important because certain ‘theories of turbulence’ assume near
Gaussian behaviour.

Perhaps it is worthwhile giving an overview of this chapter. The
layout is as follows:

5.1 Richardson revisited
5.1.1 Time and length scales in a turbulent flow
5.1.2 The energy cascade pictured as vortex stretching
5.1.3 The dynamic properties of turbulent eddies
5.2 Kolmogorov revisited
5.2.1 Assumptions and weaknesses of Kolmogorov’s theory
5.2.2 The extension of the theory to passive scalar fluctuations
5.3 The stretching of vortices and material lines
5.3.1 Enstrophy production by vortex stretching
5.3.2 Are the vortices tubes, sheets or blobs?
5.3.3 Examples of stretched vortex tubes and sheets
5.3.4 Can finite-time singularities develop in the vorticity field?
5.3.5 The stretching of material lines
5.4 Turbulent diffusion
5.4.1 The turbulent diffusion of a single particle (Taylor diffusion)
5.4.2 The relative diffusion of two particles (Richardson’s law)
5.4.3 The influence of mean shear on turbulent dispersion
5.5 Turbulence is never Gaussian
5.5.1 The experimental evidence
5.5.2 The consequences

We start the chapter by re-examining Richardson’s idea of an
energy cascade in which, it is claimed, energy is passed from large to
small scales by a repeated sequence of discrete steps. But why should
energy always pass from large to small scales, and why must this
involve a distributed hierarchy of eddy sizes? Is it not possible for
energy to travel upscale? Or perhaps we can transfer energy directly
from the large eddies to the Kolmogorov microscale in one single
action, thus bypassing the cascade. We shall show that Richardson’s
energy cascade is a direct consequence of vortex stretching, and that,
by and large, it is in the nature of chaotic vortex dynamics to pass
energy from large to small scale. So, Richardson’s picture is more or
less correct. However, there are exceptions. For example, it is not
difficult to conceive of circumstances in which energy travels from
small to large scale, thus violating the conventional picture of the
cascade. Two-dimensional turbulence provides one such example.
(This is discussed in Chapter 10.)

Next, in Section 5.2, we revisit Kolmogorov’s theory of the small
scales. This is undoubtedly one of the greatest success stories in tur-
bulence, but is it correct? Certainly its foundations are, at best, a little
tenuous. We discuss Kolmogorov’s theory in some detail, re-examining
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the assumptions which underpin the analysis. We shall see that these
assumptions are not always valid and that, in certain circumstances,
Kolmogorov’s theory breaks down. We shall also discuss how Kol-
mogorov’s ideas can be extended to describe the fluctuations of a
passive scalar, say smoke or dye in a turbulent flow.

In Section 5.3, we return to the idea of vortex stretching. This
crucial non-linear process drives the energy cascade and lies at the
heart of turbulence theory. We start by deriving an equation for the
rate of generation of enstrophy, > (@w?). In the process we shall see that
enstrophy is generated by the stretching of vortex lines and destroyed
at the small scales by the cross-diffusion of oppositely signed vorticity.
Moreover, the rate of generation of enstrophy is directly proportional
to the skewness of the velocity difference, Av. This is important
because it tells us that the statistics of the velocity fluctuations are
inherently non-Gaussian, a fact which will come back to haunt us time
and again when we discuss two-point closure models of turbulence.

Since stretched vortices are the ‘sinews of turbulence’, it is natural
to ask what shape these vortices have? Do they take the form of tubes,
sheets, or ribbons? As we shall see, both vortex tubes and vortex sheets
are prime candidates, and there has been much debate as to which is
the dominant structure. The current view is that both are important,
though they play somewhat different roles in the energy cascade.
Examples of stretched tubes and sheets are discussed at length in
Section 5.3.3.

Of course, in a typical turbulent flow, the Reynolds number (Re) is
high at all but the smallest of scales. Since vortex lines are frozen into
the fluid at high Re, the tendency for vortex lines to be stretched by
chaotic motion is closely related to the observation that material lines
are, on average, extended in a field of turbulence. This underlies the
ability of turbulence to mix any frozen-in marker, be it vortex lines or
dye lines. This is achieved through a repeated process of stretch and
fold, whereby material lines and surfaces are simultaneously stretched
and wrinkled to form highly convoluted shapes. We close Section 5.3
with a discussion of material line stretching.

We pick up the theme of mixing again in Section 5.4 where we
discuss turbulent diffusion: that is, the ability of turbulence to acce-
lerate the mixing of a contaminant. The turbulent diffusion of a
contaminant through the jostling of fluid particles is of great practical
importance. It is often divided into two classes: the diffusion of a single
particle and the relative diffusion of two particles. In the first case, we
are interested in how far, on average, a marked lump of fluid migrates
from its point of release under the influence of random turbulent
fluctuations. This is somewhat analogous to the well-known ‘random
walk’, and is referred to as Taylor diffusion. It is relevant to those

situations where a contaminant is released continuously from a single
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source (say a chimney) into a turbulent flow, and provides an estimate
of how fast the contaminant spreads. The second case in which we are
interested, the relative dispersion of two adjacent particles, was first
analysed by Richardson in 1926. Accordingly, the equation which
describes the average rate of separation of two particles is known as
Richardson’s law. The early concepts which underlie this law are
closely related to the later theories of Kolmogorov and indeed they
helped pave the way for Kolmogorov’'s famous two-thirds law.

We close, in Section 5.5, by returning to a consideration of the
probability distribution of velocity differences. We emphasis that
turbulence is fundamentally a non-Gaussian process. Without a finite
skewness there is no vortex stretching and no energy cascade. We
shall see how this has bedevilled attempts to develop closure models
based on near-Gaussian behaviour.

The theme of this chapter, then, is that of cascades, vortex
stretching, and mixing. The emphasis is on physical ideas, rather than
mathematical models. (We shall introduce the mathematics in
Chapter 6.) Let us start at the beginning, with Richardson.

5.1 Richardson revisited

5.1.1  Time and length-scales in turbulence

A French five minutes is ten minutes shorter than a Spanish five minutes,
but slightly longer than an English five minutes which is usually ten minutes.
(Guy Bellamy)

It is an empirical observation that turbulence contains a wide range of
time and length scales. In a high wind, for example, the velocity field
in a street might exhibit fluctuations over scales from 1m to 0.1 mm.
It is also an empirical observation that the vorticity in a turbulent flow
is concentrated at the smallest scales. Since v{®?) is a measure of the
rate of dissipation of mechanical energy, this implies that dissipation is
associated primarily with the smallest structures. In our high wind, for
example, much of the energy will be dissipated in structures of size
1 mm or less.
Now the turbulence usually receives its energy from the mean flow. In
a shear flow, for example, the rate of generation of turbulent energy is,
pG = ;;Sy (5.1)
where ¢ = —p(uuj) and Sy is the strainrate of the mean flow
Sy = 3 (0m;/Ox; + OW; /Ox;) (see Chapter 4). Physically, this corresponds
to turbulent vortices being stretched by the mean shear, increasing their
energy. The eddies which are primarily responsible for this energy
transfer are the largest in the flow, and these have a size dictated by the
nature of their birth. Often the large turbulent vortices arise through a



Figure 5.1

They may be spherical, tubular or sheet-like

Eddies are ‘blobs” of vorticity.

in shape, or even more complex.

Richardson revisited

distortion or instability of the mean flow vortex lines. Their size then
corresponds to a length scale characteristic of the mean flow, for
example, the length associated with gradients in the mean velocity field.

Therefore, we have mechanical energy transferred to the turbu-
lence at a large scale, and extracted at a much smaller one. The
question, of course, is how does the energy get from the large-scale to
the small-scale structures. Richardson attempted to bridge this gap by
invoking the idea of an energy cascade. He suggested that the large
structures pass their energy onto somewhat smaller ones which, in
turn, pass energy onto even smaller vortices and so on. We talk of a
cascade of energy from large scale down to small. The essential claim
of Richardson is that this cascade is a multistage process, involving a
hierarchy of vortices of varying size. It is conventional to talk of these
different sized structures as eddies, which conjures up a picture of
spherical-like objects of different diameters. However, this is a little
misleading. The structures may be sheet-like or tubular in shape
(Figure 5.1). It is also customary to talk of the energy cascade in terms
of eddies continually ‘breaking-up’ into smaller ones as a consequence
of ‘instabilities’. Again, this is a little misleading and is just a kind of
shorthand. By break-up we really just mean that energy is being
transferred from one scale to the next through a distortion of the eddy
shape. Also, the use of the word instability is possibly a little inap-
propriate, since an ‘eddy’ does not represent a steady base state. The
word is intended to imply that large structures can evolve into smaller
ones via familiar mechanisms, some of which we might encounter in
stability theory. (We shall return to this shortly.)

Richardson also suggested that, at high Re, viscosity plays no part in
the energy cascade, except at the smallest scales. Let u be a typical
large-scale velocity and [ the characteristic size of the large eddies (the
integral scale). Inevitably we have ul/v >> 1 and so viscous effects are
quite ineffective at the large scales, and indeed at scales somewhat
smaller than [. So Richardson envisaged an inviscid cascade of energy
down to smaller and smaller scales, the cascade being driven by
inertial forces alone. The cascade is halted, however, when the
structures become so small that Re based on the small-scale eddy-
size is of the order of unity. That is, the very smallest eddies are
dissipated by viscous forces and for viscosity to be significant we need
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Figure 5.2 The rate of loss of energy in grid
turbulence from (i) Batchelor (1953) and

(ii) Pearson et al. (2004). In (ii) the circles
are experiments, the crosses DNS, and R the
Reynolds number based on the Taylor scale.
The parameter A is defined by the energy
equation du®/dt=—Au’/1. For high R;,
A~0.5.
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Re of order unity. In this picture, the viscous forces are passive in

nature, mopping up whatever energy cascades down from above.
Now the large-scale eddies are observed to evolve (break up?) on a

timescale of 1/u, and so the rate at which energy passes down the

cascade from above is’
I~ /L (5.2)

Evidence for the validity of (5.2) has been accumulated in a wide range
of flows. A typical example is shown in Figure 5.2. It relates to grid
turbulence and is taken from (i) Batchelor (1953) and (ii) Pearson et al.
(2004). Here 1 is defined in terms of the longitudinal correlation
function ! = |, OOO f dr (see equation 3.15) and #* = (u?). The data corres-
esponds to a range of grid sizes and to a variety of Reynolds numbers.

! Recall that we use G to represent the rate of generation of turbulent energy by the
mean flow, and IT to represent the flux of energy down the cascade.



Figure 5.3 Schematic representation of the

energy cascade.
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Evidently, in the case of Batchelor’s data we have Il =2Au’/l,
where A is approximately constant during the decay and of the order
of unity, A~ 1.1+ 0.2. Note, however, that the value of Re in these
early experiments is modest. The more recent data of Pearson is at
much higher Re and suggests that the asymptotic value of A is A ~0.3.
This is consistent with Kaneda et al.’s (2003) findings.

Now consider the smallest scales. Suppose they have a characteristic
velocity v and length scale #. Since the rate of dissipation of
mechanical energy is v{w”) we have

e~ vyt (5.3)

In homogeneous, statistically steady turbulence the rate of extrac-
tion of energy from the mean flow, Tf}gﬁ /p, must equal the rate at
which energy is passed down the energy cascade from the large scales,
IT, ~ u’/1. This must also equal the rate of transfer of energy at all
points in the cascade since we cannot lose or gain energy at any
particular scale in a steady-on-average flow. In particular, if Il
Ilg, ..., Iy represents the energy flux at various stages of the cascade
then we have I1, =Ilz;=---=1IIy ~ u’/1 (Figure 5.3). So the energy
transfer even in the small eddies is controlled by the rate of break-up
of the large eddies. Finally we note that the energy flux at the end of
the cascade, Iy, must equal the viscous dissipation rate, &. In sum-

mary, then, for homogeneous, statistically steady turbulence,

G = pflffsﬁ =, =1l = - =1ly = e.
Y ~ ~ N~
v energy flux down dissipation at small scales

transfer of energy

to the turbulence the cascade

(5.4)
Combining (5.2)-(5.4) we have

11~ 3 fL o & ~ V21 (5.5)
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Figure 5.4 Processes which violate
Richardson’s cascade. Why do these not
occur? (Actually, sometimes they do.)
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We also know that

/v~ 1 (5.6)
and so from (5.5) and (5.6) we can derive estimates for # and v:

n e~ 1)) (7 o) (5.7)

v~ u(ul/v) e (ve) 4 (5.8)

These are, of course, the Kolmogorov microscales introduced in
Chapter 1. When the flow is neither homogeneous nor statistically
steady then G and ¢ need not balance. However, it is usually found
that IT and ¢ are of the same order of magnitude and so (5.5)(5.8)
still hold.

Now the Richardson picture is not entirely implausible, but it does
raise at least two fundamental questions. First, is there some generic
process which causes energy always to pass from large to small scale,
and not from small to large? Second, why must the process be a multi-
stage one? Perhaps there is a simple dynamical process, involving only
two or three steps, by which structures of scale (#,v) can emerge
directly from structures of scale ({,u), as shown in Figure 5.4. In fact,
these apparent violations of Richardson’s cascade can and do occur,
though they are probably uncommon at very high Re.” Let us
examine this in a little more detail.

5.1.2  The energy cascade pictured as the
stretching of turbulent eddies

To focus thoughts we now outline some simple inviscid processes by
which energy passes from large to small scale. We do not suggest that
these are the mechanisms responsible for the cascade in a turbulent flow.

? Actually, both processes shown in Figure 5.4 can, and probably do, occur. The first
is typical of two-dimensional turbulence where there is an inverse cascade of energy.
The second is discussed at length by Tsinober (2001), who warns against the notion of a
multi-stage cascade in real space. Two-dimensional turbulence, with its inverse transfer
of energy, is discussed in Chapter 10.



Figure 5.5 Stretching of a vortex tube.

Figure 5.6 Various stages in the bursting of
a vortex. The initial vortex blob eventually
ends up as a thin vortex sheet. See also

Plate 7.
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They are meant only to illustrate that an inviscid transfer of energy to
small scales is not so surprising and indeed entirely natural. Our three
examples are: (i) the stretching of a vortex tube; (ii) the selfinduced
bursting of a vortex blob; and (iii) the roll-up of a vortex sheet.

As our first example, suppose that we have some weak, rather
dispersed large-scale vorticity, ®,. In some particular region of space it
sets up a large-scale straining motion, u,, as illustrated in Figure 5.5.
(o, is not shown in this figure). Now consider a vortex tube, w,, with
a scale somewhat smaller than ®,, which finds itself in the strain field
(Sij)2- The tube will be stretched, and in the process its kinetic energy
[(u?/2) av will rise. Thus we may think of two velocity fields, u, and
u,, each related to their respective vorticity fields, », and m,, via the
Biot-Savart law. The total kinetic energy does not reside exclusively
with w; and wu, acting individually, since there is a cross-term
f u; - u, dV. Nevertheless, as f (uf / 2) dV rises due to vortex stretch-
ing, the remaining energy | (ul ‘u, +ul/ 2) dV must fall, and we may
think of energy being transferred from large to small scale.

As a second example, suppose we have an isolated blob of vorticity (an
eddy) sitting in an otherwise quiescent fluid (Figure 5.6). For simplicity,
we take the initial velocity field to be axisymmetric and we assume that it
remains so for at least some period of time after t= 0. At t =0 we take

§= I" =const. ‘
®p

| 2
§§\i”}>
r

=const.
(i) Initial (ii) Generation of azimuthal (iii) Poloidal  (iv) Poloidal motion
condition vorticity by differential motion sweeps the angular
rotation momentum radially
iz / outward
\\\\\ i I
I' =const.

NN

(v) Eventually a vortex sheet forms
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u=(0,up,0) in (r,0,z) coordinates and so the vortex is essentially a
compact distribution of angular momentum, 1" = ruy, orientated parallel
to z. The vortex does not stay compact for long, however. Rather, it
‘bursts’ radially outward through the action of the centrifugal force. In the
process, it creates a thin vortex sheet (Figure 5.6(v)). The bursting of the
vortex and the subsequent formation of the vortex sheet is a consequence
of a secondary poloidal flow, (u,,0,u,), which, although absent in the
initial condition, is induced by vortex stretching.

Perhaps it is worth digressing for a moment to explain this process.
The azimuthal components of the inviscid momentum and vorticity
equations are readily shown to be

pr 0
E— (&‘I’UpV)F—O (5.9)

2
2@ -2(%). (5.10)
Dt \ r o0z \ r*
Here wy is the vorticity associated with the poloidal velocity
u, = (,, 0, ,). Conversely, the azimuthal velocity, (0, ug, 0), is associated
with the poloidal vorticity, 0, = (0,0, ®,). Indeed, it is readily con-
firmed that I is the Stokes streamfunction for @,,. At t=0 both u, and
wg are zero. However, it is evident from (5.10) that they will not stay
zero for long. It seems that axial gradients in swirl act as a source of
azimuthal vorticity. At first sight, this may appear a little mysterious until
we realize that the term A(I'?/+")/ 0z has its origins in V X (ug X ).
Thus @y is produced through a process of self-induction in which dif
ferential rotation (axial gradients in ug) distorts the initial @, lines, spir-
alling out an azimuthal component of vorticity (Figure 5.6(ii)). It is clear
that wg < 0 in the upper half of the vortex and wg > 0 in the lower half.
Also, @y is confined to regions where I is, or has been, present.

Now I is materially conserved (equation (5.9)) and so the poloidal
flow associated with wp sweeps the angular momentum radially
outward as shown in Figure 5.6 (iv). In effect, the vortex starts to
centrifuge itself outward. The skew-symmetric distribution of wy is
maintained as the vortex expands and it is readily confirmed that
J.—o(®g/7) AV grows monotonically since, from (5.10), we have

d o0

—/ (wg/r)dV = Zn/ (I2/r*)dr >0 (5.11)

dt Jz<o 0
where ['y(r) is ['(r, z=0). Thus the vortex bursts radially outward as
shown below. However, this is not the end of the story. As the
["-contours are swept outward, they start to develop into a thin,

axisymmetric sheet as shown in Figure 5.6(v). When viewed in the
r—z plane this has the appearance of a mushroom-like structure,
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Figure 5.7 Roll-up of a vortex sheet.
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reminiscent of the head of a thermal plume (Plate 7). Actually, this
similarity to buoyancy-driven flow is not coincidental. As noted in
Chapter 1, there is a direct analogy between thermally driven and
centrifugally driven flows. For the present purposes the important

point to note is that I" is the streamfunction for ®, and so this

axisymmetric sheet is, in fact, a vortex sheet. The forf;lation of the
sheet is due to the continual straining at the edge of the vortex which
progressively thins the sheet down. If the flow were to remain axi-
symmetric (which it does not) the eventual thickness of the sheet
would be determined by diffusion. So, in this simple example we go
from a blob of vorticity to a thin vortex sheet. Actually, this busting
mechanism, which is, of course, a Rayleigh-like centrifugal instability,
is quite common. An impulsively rotated rod, for example, builds up
an annulus of swirling fluid which then disintegrates via this instability
into a sequence of axisymmetric, sheet-like eddies of the type shown
in Figure 5.6. (This is shown in Plate 7.)

As a third example, consider the flow shown in Figure 5.7. This is
the famous Kelvin-Helmholtz instability in which a vortex sheet rolls
up to form a sequence of vortex tubes. Of course, whether or not this
is regarded as a transfer of energy to smaller scales depends on
whether one regards the initial sheet as characterized by its thickness
or its larger transverse dimension. In any event, one popular cartoon
of homogeneous turbulence is the continual formation of vortex
sheets, through the stretching action of the large-scale eddies, followed
by a disintegration of the sheets (via the Kelvin-Helmholtz instability)
into thin vortex tubes (called worms). In this cartoon the energy
cascade is fuelled by the formation and subsequent roll-up of vortex
sheets. The vortex tubes, on the other hand, are passive debris whose
main role is to provide centres of intense dissipation.

There are four things to note about these simple examples, over
and above the fact that energy accumulates in the small scales. First,
the descriptions are in terms of the evolution of the vorticity field, not
the velocity field. It is more meaningful to talk about the evolution
of the w-field, since vorticity can move from place to place only if it is
materially advected, or if it diffuses. Linear momentum, on the other
hand, can be instantaneously redistributed over all space by the
pressure field (see Chapter 2). Second, these mechanisms can occur at
all scales, from the large to the small. For example, the bursting vortex
in Figure 5.6 gives rise to an axisymmetric vortex sheet. This sheet
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might, in turn, become unstable by the roll-up mechanism of Figure 5.7
producing vortex tubes and, of course, these tubes can then become
intensified by the vortex-stretching mechanism of Figure 5.5, and so
on. So, one can envisage a complex sequence of events, by which
vorticity is continually teased out into thinner and thinner films or
tubes. Third, the transfer of enstrophy to smaller and smaller scales
can arise either because eddies of two different scales interact
(example shown in Figure 5.5) or else because a single structure
evolves under a process of self-advection (examples shown in Figures
5.6 and 5.7). Fourth, there is little or no helicity in these flows. (The
helicity is exactly zero for examples shown in Figures 5.6 and 5.7.)
Recall that helicity, h =u - @, is globally conserved in an inviscid flow:

/u - @ dV = constant

(see Exercise 2.7 in Chapter 2). It is thought by some (but not all)
researchers that those eddies which are most effective in passing energy
down the cascade in a turbulent flow have relatively low values of h.
The argument, which is a little tentative, rests on the fact that

{((u-@)") + ((ux w)*) B

=1
|u?[e0?]

so that regions of relatively high helicity tend to correspond to regions
of low u X @ (for a given energy and enstrophy). However, u X
corresponds to the non-linear term in the Navier-Stokes equation
which, in turn, drives the energy cascade. So perhaps regions of high
helicity tend to exhibit a somewhat depleted energy cascade, with a
relatively low value of &.

Of course, the three examples above represent highly idealized
processes. Turbulence is a lot more complicated than simple axi-
symmetric vortices or planar vortex sheets. Perhaps a more realistic
cartoon of turbulence is to think of the vorticity field, part of which
comprises vortex tubes, as like a seething tangle of spaghetti’ con-
stantly evolving under the influence of its self-induced velocity field
(Plate 8). The constant stirring action of the velocity field teases out
the vortex tubes (spaghetti) into finer and finer strands. However, this
is still a highly simplistic view—a rather naive cartoon.

If we accept that vortex stretching is the primary mechanism by
which energy is passed down the cascade to the small scales (it
underlies the bursting vortex and the spaghetti cartoon) then it is
natural to ask why, in a random velocity field, the vortex tubes are not

? Connoisseurs would probably prefer a combination of spaghetti and lasagne since
there is ample evidence that much of the vorticity resides in the form of sheets or
ribbons rather than tubes! (see Sections 5.3.2 and 7.3.1).



Figure 5.8 The effect of a strain field on two
vortices of different orientations.
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compressed as fast as they are stretched. Well, in some sense they are
(there is a lot of compression going on), but we can use a simple
example to illustrate why stretching has the dominant influence on the
kinetic energy transfer between scales.

Consider the steady two-dimensional shear flow S,, = —S,, = o =
constant, all other components of the strain-rate tensor being zero.
to the velocity field
u = (ax, — oy, 0). Now suppose that two vortex tubes are placed in

This  corresponds steady, irrotational

this flow, aligned with the x and y axes (Figure 5.8). These are stret-
ched or compressed in line with

Dw
— = Vu.
Dt

Let us assume that [u| > |[u|, where u’ is the velocity associated with
the vortex tubes. Then, from (2.36),

D [w?* _
—|— ) = C()iCO]' Sy
Dt \ 2

and it is readily confirmed that the x-orientated vortex grows in

(5.12)

intensity as

/ w2 dv = / ()2 AV exp[2at]
Van Vin

where V,, is a material volume corresponding to a finite portion of the

tube. The y-orientated vortex, on the other hand, is compressed and

/

TN

{

i

o
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we find that a); declines:

/V ) dv /V (a)y)idV exp[—2at].

If the initial strengths of the two vortex tubes are the same then,

/ @’ dv = / ? dV cosh[2at] (5.13)
Vin Van

so the total enstrophy grows. To estimate the energy transfer we note
that

!
%%—u“VﬁEViV@+ﬂ)

However, the term u - VU cancels with Vp and so we have

5/
—u:—u’AVﬁ—Vp'
Dt

from which
E ((u’)2> = —u{u}gij + V. (~) = fx((u;)z—(u;)z) + V- (~).

Dt 2

(5.14)

The divergence on the right integrates to zero and so the kinetic
energy of the vortices grows or falls according to whether
cx((u;)z — (u)?) is positive or negative. However, (u;)z grows due to
the stretching of the x-orientated vortex while (#)* falls due to
compression of the y-orientated vortex (Figure 5.8). So the net change
in energy, 7 (u')?, is positive. It seems that, despite the fact that there is
both stretching and compression of vorticity, there is an overall gain in
both energy and enstrophy. In short, stretching of vorticity has the
dominant influence on the energy transfer.

In summary, then, this toy problem suggests that stretching out-
weighs compression in the long run. In fact, we could have reached
the same conclusion from a consideration of Figure 5.5. It does not
matter what the initial orientation of the vortex tube happens to be. It
seems probable that sooner or later it will end up being stretched as
shown, with the long axis of the vortex orientated with the strain field.
This idea is generalized in the following example.

Example 5.1 Rapid distortion theory applied to an isolated eddy

Consider a small-scale eddy, such as that shown in Figure 5.5. It sits in
the irrotational velocity field induced by an adjacent, much larger
eddy. Let @® be the vorticity field of the smaller eddy, u® be the
velocity field of the small eddy calculated from @® using the Biot-
Savart law, and u" be the large-scale, irrotational flow. The total
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velocity field is u =u" + u’. We shall suppose that: (i) the fluid may be
treated as inviscid; (i) u" may be considered as quasi steady; (iii) the
gradients of u" may be considered as uniform on the scale of the
smaller eddy, u- = (uiL)OJraijxj; and (iv) the smaller eddy is weak in
the sense that |[u*| < |u"|. Show that, in such a situation, @° is
governed by,

where the quadratic term in u® has been neglected. Note that this
equation is linear in @®. Moreover, ®° is ‘frozen’ into the large-scale
irrotational flow and so is stretched and twisted by u". This kind of
linear problem is sometimes referred to as rapid distortion theory
because it relates to a vortex being rapidly stained by a larger, adjacent
eddy. Confirm that

D’ [w?
<—) = Z(OCleOi)Z >0

D2 \ 2

and hence show that, sooner or later, the enstrophy of the small-scale
eddy is bound to rise due to vortex stretching. Now suppose that x,y,
and z, are aligned with the principal axis of strain of u". In such a case,
we have o, =4, ty,=b, &;; =, and oy =0 if i #j. Conservation of
mass requires @ +b+c=0 and we shall order 4, b, and ¢ such that
a>b>c. Show that @’ grows exponentially on a timescale of 2a,
while @? declines exponentially on a timescale of 2c. Hence confirm
that, in the long run, there is an exponential growth in enstrophy.[]

There is general agreement that vortex stretching underlies the
energy cascade. The intensification of vorticity by straining can be
quantified by the entrophy equation (see Section 2.3.2),

D (@
D <7> = 00,85 — V(V X ) +V - v x (V x @)]. (5.15)
Enstrophy, ®”/2, is destroyed at the small scales by the viscous forces
but is intensified at the larger scales by the strain field. Indeed, we shall

see shortly (in Section 5.3.1) that (COQCOJ(S{

1j> is positive in conventional

turbulence.

We have already suggested a simple cartoon of turbulence in which
the vorticity field is pictured as a tangle of spaghetti (Plate 8). If this is
at all realistic then we would expect the vorticity field at the small
scales to be highly intermittent (spotty). That is, as the vortex tubes
and ribbons are teased out by their self-induced strain field they
become thinner and thinner, concentrating the vorticity into small,
localized regions of space. While it is uncertain how representative a
cartoon this really is, it is certainly true that the small-scale vorticity is
indeed highly intermittent. We shall return to this issue in Chapter 6.
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Figure 5.9 Neither very large nor very
small-scale velocity fields have much
influence on an intermediate sized vortex.
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(i) Large-scale velocity simply moves the vortex tube around
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(ii) Small-scale velocity wrinkles surface of the vortex tube

We close this section by returning to the issue of whether or not energy
is really transferred to the small scales via a multistage cascade. There is no
universal agreement here, but most people believe that, by and large, the
cascade model is a reasonable approximation. The usual argument goes
something like this. Consider the vortex tube shown in Figure 5.9. Suppose
that this is characteristic of some intermediate-sized vortex in the turbulent
cascade. Very large structures have a velocity field which is almost uniform
on the scale of our tube and so they simply advect it around in a passive
manner (Figure 5.9(i)). Also, we know that the strain rate of the very small
vortices, v/#, is much greater than that of the large vortices, (v/#) ~ (ul/
)" *(u/1). We would expect, therefore, that the strain rate increases
monotonically as we pass from large to small scales, and this is precisely
what is observed. Thus the structures which most effectively strain the
vortex tube shown in Figure 5.9 are those which are similar in size to the
tube itself. (Very small structures will have negligible influence on the tube
because they simply wrinkle the surface of the vortex (Figure 5.9(ii)).) So, if
we believe that the energy cascade is driven by vortex stretching, then it
seems likely that the most efficient transfer of energy to smaller scales
occurs when vortices of similar sizes interact. We might, for example,
picture an intermediate vortex falling prey to the strain field of a somewhat
larger one, transferring energy to the smaller vortex, or else two like-sized
vortices mutually interacting and straining each other, eventually giving
rise to smaller-sized structures. In any event, it is thought that the strongest
interactions tend to involve structures of similar sizes.

5.1.3  The dynamic properties of turbulent eddies
(an exercise in vortex dynamics)

We close Section 5.1 by examining the dynamic properties of turbu-
lent eddies (vortex blobs). The main point we wish to emphasis is that
we can characterize much of the behaviour of turbulent eddies, and



Figure 5.10 An isolated blob of current of
volume V generates an average magnetic field
within V of magnitude B = (1y/3V) [xx
JdV. The equivalent result in fluid mechanics is
that an isolated blob of vorticity of volume V.
generates an average velocity within V, of

Ve =(1/3V) [x X @.dV.

Richardson revisited

indeed a turbulent cloud, in terms of the linear and angular
momentum of individual eddies. The key ideas are set out below in
the form of a sequence of examples. Those readers who are well
versed in vortex dynamics will be familiar with much of this material.

Example 5.2 The linear impulse (or linear momentum) of a tur-
bulent eddy

Eddies (blobs of vorticity) move around partly because they get caught
up in the irrotational velocity field of other, adjacent eddies, and partly
because, even in the absence of other eddies, they can propel them-
selves through otherwise still fluid. This ability of an eddy to advect
itself is related to the linear impulse (a measure of the linear momen-
tum) of the eddy, as this example shows.

A standard result from elementary magnetostatics is the following.
If a set of currents are confined to a spherical region of space, V, then
the average magnetic field in V is proportional to the dipole moment
of the current distribution. More precisely,

1
/BdV——,uo/xXJdV
v 3 v

where B is the magnetic field and J is the current density (Figure 5.10).
(These fields are related by Ampere’s law V X B = p,J, o, being the
permeability of free space.) If all of the current lies outside the sphere,
on the other hand, we have

/BdV—BoV
v

where By is the value of B at the centre of the sphere (see, for example,
Jackson, 1998, Chapter 5).

Now consider an eddy (blob of vorticity) in a turbulent flow. Sup-
pose that the eddy is spatially compact in the sense that its vorticity, o,
is negligible outside some spherical volume V.. Let u. be the velocity

Magnetic field induced
by current blob

Blob of current

Ve
\¥ _f-u'/
_ Velocity field induced
" Dby blob of vorticity

e

Blob of vorticity (eddy)
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Figure 5.11 An eddy moves partly because
it gets caught up in the irrotational velocity
field of other eddies, @,, and partly through a
process of self-advection, 2L./3V.. The total

velocity of the eddy, averaged over its volume,

is Ve =09 + 2L./3V..

216

field induced in the fluid by the presence of the eddy, V X u. = w,, and
u be the velocity field associated (by the Biot-Savart law) with all the
other eddies (vortex blobs). The total velocity field is u=u,.+ 0. We
define the spatially-averaged translational velocity of the eddy, v, to be

1
Ve ——/ udv
VC Ve

Use the magnetostatic result to show that v, is composed of two

terms, as follows:

1 1

Ve =— [ udV=nu,+ /XxwedV
e VC e e

Here 1, is the velocity at the centre of V. induced by all the other

turbulent eddies. Thus the eddy moves partly because it caught up in the

irrotational velocity field of the other eddies, and partly through a pro-

cess of self-advection. This second effect is related to the magnitude of
1

L. = z/ x X . dV  (linear impulse).
Ve
L. is referred to as the linear impulse of the eddy. It is also, on occasions,
called the linear momentum of the eddy since it may be shown that L,
is the net linear momentum introduced into the fluid by virtue of the
presence of . (see Appendix II). In terms of L. we have (Figure 5.11)

2L
3Ve

Ve:ﬁ0+

Irrotational velocity
due to other eddies, 4

Linear impulse of eddy, L,

N

Self-advection of eddy, 2L./3V,

Net velocity of eddy, v,



Figure 5.12 The total linear impulse (or
linear momentum) of a cloud of turbulence,
L=2Z2L.= %fx X @wdV is an invariant of the

Richardson revisited

Note that, because the integral of ® over V. is zero,

the value of L. is independent of the choice of origin for x. We may
summarize these statements as follows:

The linear impulse of an eddy, L. = % Jx X @4V, is a measure of the
linear momentum introduced into the fluid by virtue of the presence of
that eddy. The eddy moves around partly because it gets caught up in the
irrotational velocity field, @, of the other eddies and partly as a result of its
own linear impulse, v, =1, + 2L./3V..

Example 5.3 The linear impulse (or linear momentum) of a
turbulent cloud

Use the vorticity evolution equation to derive an expression for the
material rate of change of x X . Show that this equation is of the

form

D(x X )

o = grad(~) +div(~) + curl(~)

and deduce that, for a localized distribution of vorticity evolving in an
infinite fluid (which is otherwise free from vorticity),

1
L= S / x X @ dV = constant (conservation of linear impulse).

Now consider a cloud of turbulence composed of many eddies,
® =) . (Figure 5.12). From the above we may say that:

The net linear impulse of a turbulent cloud evolving in an infinite fluid,
L= % f x X wdV, is the sum of the impulses of the individual eddies,
L= Z L., and is a dynamical invariant of the motion.
In Chapter 6, we shall see that the conservation of L leads to a
statistical invariant (called the Saffman-Birkhoff integral) for freely
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evolving turbulence. However, in some types of turbulence, L is
approximately zero because negligible linear momentum is imparted
to the turbulence during its formation. In such cases attention is

transferred to the angular momentum of the eddies.

Example 5.4 The angular impulse (or angular momentum) of a
turbulent eddy

Each turbulent eddy carries with it a certain amount of angular
momentum, as this example shows. Suppose we have a turbulent flow
consisting of a number of discrete, non-overlapping eddies (blobs of
vorticity). Consider one particular eddy which is spatially compact in
the sense that its vorticity, ®,, is negligible outside some spherical
control volume V.. (V. encloses the eddy in question, but no other
eddy.) Use the vector identity

6(x xu) =2x X (x X @) +3V x (r"u) — @ V(r’x)

to show that the net angular momentum within V., measured about
the centre of V., is given by,

1
H, = / x X udV = 5/ x X (x X @.)dV (angular momentum
Ve Ve = angular impulse).

Thus the net angular momentum, H,, of an eddy, defined in the sense
above, is uniquely determined by its vorticity distribution, and inde-
pendent of the vorticity outside V.. (Remote eddies make no contribu-
tion to H..) The integral on the right is called the angular impulse of the
eddy. Note that, since the angular impulse is independent of the radius
of V., so is the angular momentum. That is, different concentric spheres
enclosing our eddy (but no other eddy) all give the same value of H..

This result holds only if the origin for x lies at the centre of the
control volume V.. Suppose we shift the origin for x to some other
location within V.. Let x. be the geometric centre of V. in the new
coordinate system, and x’ be the position vector measured from x.,
that is x = x. + x/. (Here x’ plays the role formally adopted by x.) Use
the identity

2[¥ X (xe X @)]= [xe X (¥ X 0)]; 4V [¥ X (xe X x'),00]

to show that,

1

1
5/ X X (xxwe)dV:g/ X X (xX' X @) dV + xe X Le.
e Vﬁ

Thus we must be careful in our choice of origin. However, in certain
types of turbulence, L. 220 in a typical eddy. In such cases the choice
of origin for x is immaterial.



Figure 5.13 In a large confined domain the
kinetic energy of a cloud of turbulence
decreases much faster that the angular
momentum.
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Example 5.5 The angular impulse of a turbulent cloud

Consider a cloud of turbulence composed of many discrete eddies,
® =) ®,. The net angular momentum of the fluid within any
spherical control volume V. which encloses o is

1 1
Hg[&xx(xxw)dVZg/vexx(xxwe)dv

where x is measured from the centre of V.. Find an expression for
D(x X (x X @))/Dt and show that, for a turbulent cloud evolving in an
infinite fluid (which is otherwise free from vorticity), H is a dynamical
invariant of the motion:

1
H—/ x X (x X @) dV = constant
Ve

(conservation of angular impulse).

In certain types of turbulence L. = 0 in a typical eddy. In such cases the
conservation of H leads to a statistical quantity which is almost, but
not precisely, conserved (see Chapter 6).

Example 5.6 Angular momentum constraint in confined, freely
decaying turbulence

Consider a cloud of turbulence confined to a closed spherical domain of
radius R. Suppose that R>1, where [, is the integral scale of the
turbulence at t = 0. The energy density of the turbulence declines on a
time-scale of I/u in accordance with (5.2). The angular momentum, on
the other hand, changes only as a result of the surface stresses and
Landau and Lifshitz (1959) suggest that, since this is a surface effect,
these will influence the bulk angular momentum on a much larger
timescale, say 7y The implication is that the cascade-enhanced
dissipation of energy is much faster than the rate of decay of global
angular momentum. This suggests that, as long as R > [, we might treat
the free decay of confined turbulence as a monotonic decay in energy
subject to the conservation of angular momentum (Figure 5.13).

Angular momentum

Kinetic energy
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Use the Schwartz inequality to show that the conservation of
angular momentum imposes a lower bound on the global kinetic
energy. Now show that the variational problem of minimizing kinetic
energy subject to the constraint of conservation of angular momen-
tum leads, when viscous stresses on the outer boundary are ignored,
to a flow which consists of one large, axisymmetric vortex. (This
suggests that, as long as t is large relative to [/u, but small relative to
Ty, the integral scale, [, rises. In practice, though, the idea that there
are two timescales, [/u and 1y, breaks down long before we reach the
point where a single vortex is predicted to emerge.)

Example 5.7 The exchange of impulse (momentum) between eddies
Consider a cloud of freely decaying turbulence composed of many
discrete eddies, @ = > .. The cloud evolves in an infinite domain
which is otherwise free from vorticity. The global impulse,
L :%fx X ®dV, and angular impulse, H :%fx X (x X @)dV, of
the cloud are conserved during the decay (see Examples 5.3 and 5.5
above). However the linear and angular impulse of an individual eddy,
L. and H,, may change due to an exchange of momentum between
eddies. We wish to determine the nature of this exchange. Consider a
single eddy within the cloud which is characterized by an isolated
region of vorticity, ®,., confined to a volume V.. Show that, if viscous
diffusion is neglected,

DL 1
e—/uxde, Le——/xxde.
Dt Jy 2 /.

This represents an exchange of momentum between the eddy V. and

the surrounding eddies. The velocity which appears in the integral
above has two components, u=u.+u, where u. is associated
(though the Biot-Savart law) with the vorticity of the eddy,
.=V Xu, and u is the irrotational velocity field generated within
V. by the other, remote eddies. Show that u. makes no net con-
tribution to the integral, and so

DL. X
= X wdV.
Ve

Dt

(Hint: rewrite u. X @, as V(u?/2) —u. - Vu, and convert the volume
integral into a surface integral.) Since the volume integral of w, over

V. is zero this can be rewritten as

DL,
_/ @ — o) X ©dV
pr )y

where 1, is the value of U at the centre of V.. Next we suppose that
the irrotational strain field of the surrounding eddies may be
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Figure 5.14 Eddies in a cloud of turbulence exchange linear momentum at a rate
determine by their linear impulses and by their separation, r. If they both have finite
linear impulse then they exchange momentum at a rate proportional to r *. If they both
have zero initial impulse then the exchange is no greater than 0(r™°).

considered as uniform on the scale of V.. Confirm that, in such cases,
the equation above reduces to

DL. .
Dt - _[(Le ' V)u]O'

We now consider the interaction of our eddy in V, with just one of the

surrounding eddies, as shown in Figure 5.14. If the two eddies are
widely separated then we can use the far-field approximation to u:

6= () (V) e/

(see Appendix II). Here L is the linear impulse of the distant eddy and r
is the displacement between the two eddies, measured from the
remote eddy to V.. Combining these result yields

I?DL: - 4%(Le WYL - V) (e/r?) + -

Thus, to leading order in 1/v, the two eddies exchange linear
momentum at a rate proportional to I:, L., and r . It turns out that, if
both L and L. are initially zero then the exchange of linear momen-
tum is much weaker, being at most of order r °. This equation
extends in an obvious way to incorporate the simultaneous interaction
of N eddies (vortex blobs) in a turbulent cloud. Thus we may conclude
the following:

The strength of the interaction of two remote eddies in a turbulent cloud,
as measured by their exchange of linear momentum, depends crucially on
whether or not the eddies posses a non-zero linear impulse. If their linear
impulses are both finite, then the interaction is of order r . If the linear

impulses are both zero then the interaction is no greater than +°.

Finally we consider the angular impulse of our isolated eddy,
H. =1 [, x X (x X 0)dV. Show that H, evolves according to

DH.
/ x X (u X w)dv
Dt Jy,

and that, as for the linear impulse, the rotational velocity u. makes no
contribution to the integral on the right. It follows that

DH. "
= / x X (0 X w)dV
Dt V.
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where u is the irrotational velocity of the remote eddies. This repre-
sents the exchange of angular momentum between the eddy in V. and
the surrounding eddies.

Example 5.8 Is the enstrophy and energy arising from different
scales additive?
We often talk as if the enstrophy of a field of turbulence can be
unambiguously distributed amongst the different scales. That is, we
talk as if eddies of one scale make a certain contribution to 3 (®?),
while those of another scale make a second contribution, and so on.
However, this is not the case. Suppose, for example, that @ = > o,
where the m,’s represent the vorticity fields of different sized eddies.
Then ®* = > ) ®,  ®, which leads to cross terms of the form
®, »,, n#m. These cross terms cannot be unambiguously asso-
ciated with one particular eddy size. Luckily, though, in those cases
where the eddies are of very different size, the cross terms are small, as
we shall now show.

Consider a small and large eddy occupying a common space.
Let their vorticity distributions be ®* and ®". The total enstrophy is
then

1 1 1
—/ o’ dV = _/ (@Y av+= [ (@dv+ [ o~ o®dv
2 Vi 2 Vi 2 Jys Vs

where Vi, and Vg are the volumes occupied by the large and small
eddies, respectively (V; > V). Show that, because ®° is solenoidal and
negligible outside Vg, the cross term is of the order of

Owr i
/ o o’dv = / —L xS AV ~ 2 o’y
Vs Vs axl lL

where Ig and [, are the characteristic length-scales of the two
eddies. This is small relative to the integral of (®°)* provided that
ls <1y

Now show that, in those cases where the turbulent eddies have
negligible linear impulse, that is,

1
Le:—/xxo.)edV:O
2 V.

a similar result holds for the relative contributions to the kinetic energy.
That is, the cross terms are relatively small for eddies of very different
size. (You will need to make use of the results in Example 5.2.)



Kolmogorov revisited

5.2 Kolmogorov revisited
5.2.1 Dynamics of the small scales

Let us now consider Kolmogorov’s (1941) theory of a universal
equilibrium range.” In many ways this is a remarkable theory because
it makes a very specific prediction (the two-thirds law) which turns out
to be quite robust. Such results are few and far between in turbulence.
Our starting point is the structure function,

(AVONP) = ([u e+ e — . ()]%)

In Chapter 3, we noted that ([Av]’) is of the order of all of the energy
contained in eddies of size r or less. In isotropic turbulence, for

example,
4
<[AV(1’)]Z> ~3 [energy in eddies of size r or less].

Let us temporarily restrict ourselves to homogeneous, freely-decaying
turbulence. (We shall remove this restriction shortly.) If we follow the
received wisdom then, after a while, freely decaying turbulence will
have largely forgotten the precise details of its initial conditions and
we would expect the number of parameters which influence ([AvT)
to be rather limited. In fact it is often supposed that,

<[AV(1’)]2> = F(u, L7, t,v). (5.16)

Here u is a typical velocity of the large eddies, say #* = <(u;)2>, and
l is the integral scale, perhaps defined in terms of the longitudinal
correlation function = [fdr. Actually, (5.16) is incomplete. We shall
see in Chapter 6 that there is at least one missing parameter in F.

* The ideas described in this section were first published by Kolmogorov in Russian in
1941 in two short papers. (A convenient English translation of these two papers is listed
in the references.) These papers were brought to the attention of western scientists by
Batchelor (1947) who discovered an English translation of the 1941 papers in Cambridge
in 1945. It is remarkable that English-language editions of the Russian journal made it
from the USSR to Britain during such turbulent times. (Moffatt, 2002, notes that
Batchelor’s lucky find may be due to the fact that bound copies of Soviet journals were
used as ballast in supply ships making their way through Arctic waters to the west.) In
any event, it was Batchelor who promoted and popularized Kolmogorov's work.
However, as is often the case in science, similar ideas where developed independently by
a number of other scientists around the same time. For example, Heisenberg, who, in
1945, was being held under military restraint just outside Cambridge, disclosed to
G. L. Taylor that he and Von Weizsacker had developed a statistical theory of the small
scales. It turns out that this theory had much in common with Kolmogorov's work. Of
course, Heisenberg could not have known of Kolmogorov's work and indeed in the 1946
edition of Sommerfeld’s Lectures on Theoretical Physics the new theories are attributed
exclusively to the German scientists. The physical chemist L. Onsager also published
similar ideas in 1945.
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Figure 5.15 Measurements of the long-
itudinal correlation function taken at different
times during the decay of grid turbulence
(from Batchelor, 1953).
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In particular, freely decaying turbulence possesses a statistical invariant
associated with either the conservation of linear momentum or else
the conservation of angular momentum. This influences the shape of
F for large 7, though it is probably unimportant as far as the small
eddies are concerned. In any event, we shall proceed for the moment
on the assumption that the list of parameters in F is complete. Let us
consider first the form of the spectrum for the large eddies.

When r>>n (1 being the Kolmogorov scale) the viscous forces are
negligible and we may drop v from the list in (5.16). In dimensionless
form (5.16) becomes

([AV()]*) = w’F(r/L ut/1)

where F, unlike F, is dimensionless. In decaying grid turbulence it is
usually found that this simplifies to

([Av(n)]") = w’F(r/1)
where F is related to the longitudinal correlation function, f, by
F=2(1—f).

Expressions of the form (5.17), which are self-similar, are referred to as

(5.17)

(5.18)

self-preserving spectra. Examples of self-preserving spectra, given by
Batchelor (1953), are shown in Figure 5.15. (Actually this shows f
rather than F.) These spectra represent grid turbulence measured at
different times in the decay.

Let us now remove the restriction of homogeneity and turn to the
small eddies, of size r<<I. This is the regime which interested Kol-
mogorov. He claimed that these small vortices are statistically iso-
tropic (this is known as local isotropy), in statistical equilibrium, and of
universal form. Let us try to explain what these three terms mean and
why they represent a plausible approximation.
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If we accept the phenomenology of the energy cascade then there
are two important things we can say about the eddies of size r <L
First, they have a complex heritage. They are the offspring of larger
eddies, which came from yet larger parents, and so on. It seems
plausible, therefore, that they do not retain any of the information
which relates to their great-great-great-grandparents. Moreover, it is
unlikely that they feel the instantaneous effect of the large-scale
structures since these have a velocity field which is almost uniform on
the scale of the small eddies, and this simply advects the small
structures around in a passive manner (Figure 5.9).

Second, the characteristic timescale of these small structures is very
fast by comparison with the large eddies. For example, at the Kol-
mogorov microscale we have (1/v)~ (I/u)(ul/ V) Y2« 1/u, and we
would expect the turn-over time of eddies of intermediate size to
decrease monotonically from large to small scale. In summary, then,
the small scales do not feel the large scales directly and the large scales
evolve very slowly by comparison with the small eddies.

Now in general the large scales are both anisotropic and statistically
unsteady. However, the anisotropy arises from the mechanism which
generates, or maintains, the turbulence. Since the scales of size r <1
do not feel the large eddies directly, and since the large eddies evolve
very slowly (relative to the small), it seems probable that the small
structures do not feel the large-scale anisotropy, nor do they feel the
overall time-dependence of the flow except to the extent that the flux
of energy down the energy cascade changes, II=1I(t). So, at any
instant the small eddies are in approximate statistical equilibrium with
the large scales and they are more or less isotropic. This is what
Kolomogorov meant by local isotropy and statistical equilibrium. The
regime r <1 is known as the universal equilibrium range.

An appealing (if somewhat simplified) cartoon which illustrates the
tendency for the small scales to become statistically isotropic is given
by Bradshaw (1971). Suppose we have a portion of a large-scale vortex
tube which is being stretched by the mean strain. If it is aligned with
the z-axis, say, then its kinetic energy, which grows due to the
stretching, is primarily associated with u/ and u;. These enhanced
velocity components will now stretch smaller vortex tubes in the
vicinity of the original large-scale tube. For example, x-directed gra-
dients in the x component of u’ will tend to stretch the smaller vortex
lines along the x-axis, increasing u and u;/. (Here the double prime
indicates the velocity field associated with the smaller vortex tubes.)
Gradients in u;, on the other hand, tend to increase ! and u!. We
now consider the influence of u” on yet smaller vortex tubes and so
on. In this way we can build up a ‘family tree’ showing how the
consequences of large-scale stretching progressively feed down to
smaller and smaller scales. The picture which emerges is shown in
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Figure 5.16 Three generations of vortex
stretching resulting from the initial elongation
of a z-directed vortex tube. By the time we
have reached the third generation there is
little hint of the large-scale anisotropy.
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Figure 5.16. The important point to note is that the anisotropy of the
large-scale vortex tube is rapidly lost as we pass down to smaller and
smaller eddies.

Let us now return to (5.16). It would seem that ¢ is relevant only to
the extent that it influences IT ~ & ~ u’/L This is also true of u and
and so (5.16) reduces to

([AV]) =Fe,v,r) (r<1). (5.19)

This is a special case of Kolmogorov’s First Similarity Hypothesis, which
states that:

When Re is large enough, and r <, the statistical properties of [Av](r)
have a universal form which depends on only &= (215;S;), r and v.

In dimensionless form we may rewrite (5.19) as
([AV]") = v*F(r/n)

where v and # are the Kolmogorov microscales, v = (v¢)

(5.20)

14 n=@>/
€)', Since the large scales have only an indirect influence on the small
eddies, and since the global geometry impacts only on the large scales,
we might expect F(r/#) to be a universal function, valid for all forms of
the turbulence. (Hence the claim of universality in the first similarity
hypothesis.) This is the basis of Kolmogorov’s universal equilibrium
theory.

When the experimental data corresponding to high-Re flows are
examined, it turns out that (5.20) is a remarkably good way of com-
pacting the data, and that F does indeed appear to be universal. For
example, Figure 5.17, which is taken from Saddoughi and Veeravalli
(1994), shows data taken from boundary layers, wakes, grids, ducts,
pipes, jets, and even the oceans. The energy spectrum, normalized by
the Kolmogorov microscales, is plotted instead of ([Av]?)/v*. However,
we shall see shortly that whenever ([Av]’)/v” is a universal function of
r/# then kE(k)/v* must be a universal function kx. Put another way, a
test of (5.20) is to look to see if E(k)/v’y = E(k)/ (81/5)1/4 is a universal
function of k#. For r<1 all of the data collapse to a single universal
curve when k is normalized by # and E(k) by v*. (Different sets of data
correspond to different values of Re and so peel off the universal curve
at different values of k#.) So there is convincing support for (5.20). This
is a great triumph for Kolmogorov’s (1941) theory!

We must be cautious, however, of endorsing all aspects of Kol-
mogorov’s theory on the basis of such data. For example, the existence
of a universal equilibrium range does not, in itself, offer direct con-
firmation of Kolmogorov’s local isotropy hypothesis. Indeed, there is
now convincing evidence that, although local isotropy usually holds at
very high k, the universal equilibrium range frequently begins before



Figure 5.17 Energy spectrum versus wave
number normalised by the Kolmogorov
scales. The data is taken from Saddoughi
and Veeravalli (1994) and incorporates
measurements compiled from many
experiments including measurements made in
boundary layers, wakes, grids, ducts, pipes,
jets, and the oceans. All the data corre-
sponding to kI>> 1 fits on a universal

curve when E and k are normalised by the
Kolmogorov scales. This gives direct support
for eqn (5.20) and Kolmogorov’s universal
equilibrium theorem. (With permission of
Cambridge University Press.)
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local isotropy is fully achieved. In some extreme cases the influence of
the large-scale anisotropy can be felt almost all the way down to the
dissipation range (Ishihara, Yoshida and Kaneda, 2002).

So one of the cornerstones of Kolmogorov’s (1941) theory appears
to be a little tenuous. Another of Kolmogorov's claims, that of uni-
versality, has also come under attack. Indeed, even from a very early
stage, Landau objected to Kolmogorov’s claim that the structure of
turbulence in the equilibrium range has a universal form. In the first
edition of Landau and Lifshitz’s Fluid Mechanics (English translation,
1959) there appears a footnote which was to have great ramifications
for turbulence theory. It states:

It might be thought that a possibility exists in principle of obtaining a universal
formula, applicable to any turbulent flow, which should give ([Av]®) for all

distances r that are small compared with L In fact, however, there can be no
such formula, as we see from the following argument. The instantaneous
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value of ([Av]®) might in principle be expressed as a universal function of the
energy dissipation ¢ at the instant considered. When we average these
expressions, however, an important part will be played by the law of variation
of & over times of the order of the periods of the large eddies (of size ~ 1),
and this law is different for different flows. The result of the averaging
therefore cannot be universal.

The physical insight crammed into these few words turns out to be
staggering, and parts of the turbulence community are still unpicking
some of its consequences. It is common to reinterpret Landau’s
objection in the spatial domain rather than the temporal domain. The
difficulty which Landau foresaw is the following: in Kolmogorov’s
theory, it is not the globally averaged dissipation, (¢), which is
important but rather the local dissipation averaged over a volume
somewhat larger than v but much smaller than . This local average of
¢ is itself a random function of position and time and in principle its
manner of fluctuation can vary from one flow to the next. This is a
subtle point which turns out to have important consequences.

In summary, then, the experimental data seems to lend strong
support for Kolmogorov’s first similarity hypothesis (at least in the
restricted form of 5.20) but Kolmogorov’s claim that the equilibrium
range is both isotropic and universal (the same for all types of flow)
may not be strictly correct. Still, encouraged by Figure 5.17, let us
pursue Kolmogorov’s theory a little further, temporarily glossing over
Landau’s objection.

We now consider a sub-domain of the universal equilibrium range.
This sub-domain, called the inertial sub-range, satisfies << r << I. In this
range we would not expect v to be a relevant parameter and this leads
to Kolmogorov’s Second Similarity Hypothesis, which states that:

When Re is large, and in the range # < r <1, the statistical properties of
[Av](r) have a universal form which is uniquely determined by r and
&= (2vS;;S;) alone.
The only possibility of eliminating v from (5.20) is if Fx) ~ x*'>. So,
in the inertial sub-range we have,

([AV]) = Be?*r* (< r < 1) (5.21)

where f is (according to this theory) a universal constant, found to
have a value of ~ 2. This is known as Kolmogorov’s two-thirds law.
When formulated in terms of the energy spectrum, rather than
([AVT®), we have

E(k) = 0e®*k /. (5.22)

It turns out that, for Re — 00, 2~ 0.76f (see Landau and Lifshitz,
1959). Equation (5.22) is known as Kolmogorov’s five-thirds law. We



Figure 5.18 Different ranges in the energy
spectrum.
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can derive (5.22) either by dimensional arguments, as we did to obtain
(5.21), or else by noting that
(v ~ [ a
n/r
(see Section 2.5 of Chapter 3).
In summary, then, we may divide the spectrum of eddies up into
three ranges (Figure 5.18), as shown below:

Name Range Form of {[Av]?)
Energy containing eddies reol ([AVTY) = u’F(r/1)
(freely decaying turbulence only)

Inertial sub-range n<r<l (AVP) = pe*/*r"?
(all types of turbulence)

Universal equilibrium range r<l ([AVT?) =V*F(r/n)

(all types of turbulence)

We shall return to this table in Chapters 6 and 8 where we see that
it must be modified. In the meantime we note that very high values of
Re are necessary in order to obtain an inertial sub-range. Recall that
1~ /)"l If we are to obtain a range of r in which < r<,
3/8 > 1. This is difficult to achieve in a wind-tunnel,
though it can and has been done.

then we need Re

There is an alternative means of deriving the two-thirds law which
is often attributed to Obukhov. Obukhov’s theory is usually framed in
terms of E(k), rather than ([Av(r)T?), but we shall stay in real space in
our description. Suppose that eddies of size r have a typical velocity v,.
We have seen that the flux of energy down the cascade is constant
(provided we have statistical equilibrium) and so the cascade of energy
at each point in the universal equilibrium range, I11(r), must be equal
to . Also, we have seen that II() ~u’/l because the large eddies
evolve (break up?) on a timescale of their turn-over time. Now
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suppose this is true of all eddies, that is eddies of size r evolve on a
timescale of r/v,. Then we have II(r) ~ v’ /r. So, in that part of the
spectrum which is in statistical equilibrium, we have I1(r) ~ v /r ~ g,
from which v2 ~ £2/*7*/*_ However, ([Av]?) is of the order of all of the
energy in eddies of size r or less, and the dominant contribution will
come from eddies of size r since these are the most energetic. Thus
v2 ~ ([Av]?) and it follows that ([Av]®) ~ &/*r*/*_ It seems that there
is more than one way of explaining the r*'? variation of ([Av]*)!
(Actually, Kolmogorov himself gave two quite distinct derivations of
the two-thirds law—see Section 5.3.1.)

There is no doubt that, to within the limits of experimental accu-
racy, the r*'? law (or equivalently the k~°’? law) appears to be correct.
Wind-tunnel data in support of this law is given, for example, by
Townsend (1976) and Frisch (1995), and there is an extensive discus-
sion of the two-thirds law and its experimental validation in Monin
and Yaglom (1975). While some experiments show a slight deviation
from #*'?, this deviation is usually smaller than the scatter in the
experimental data. Interestingly, there is anecdotal evidence that,
before formulating his theory, Kolmogorov was aware of the 1935
measurements of Godecke, which strongly suggest an r*'? law.
(Godecke’s data is shown in Monin and Yaglom, 1975.) So, while
Kolmogorov’s universal equilibrium hypothesis is undoubtedly a work
of inspiration, it seems that nature provided a few hints on the way.

We conclude this section with a note of warning. In Chapter 3, we
noted that structure functions of order p can be defined as

([AV]) = ([me(x + r&c) — ue(x)]). (5.23)

Following Kolmogorov’s second similarity hypothesis the form of
(TAVF) in the inertial range must be of the form,

(IAVF) = Bo(en)?®  (p < r < D). (5.24)

No other combination would eliminate v as a parameter. For p =2 we
recover the two-thirds law. For p =3 we have ([Av]’) = f;¢r. In fact it
can be shown that, when the turbulence is globally isotropic, f; = — 4/5
(see Chapter 6), and so

<[Av]3> = —gsr. (5.25)
This is known as Kolmogorov’s four-fifths law. Like the two-thirds
law, this is well supported by the experimental data. Moreover, it is
encouraging that f§; is universal, as suggested by Kolmogorov’'s
theory. So far, so good. Unfortunately, things start to go wrong as p is
increased above 3. The exponent n in the relationship ([Av]") ~ 1"
starts to drop below p/3. The discrepancy is small at first but by the
time p reaches 12 the exponent n has a value of ~ 2.8, rather than the
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expected 4. Clearly there is something incomplete about Kolmogorov’s
theory and this is related to Landau’s cryptic (but in retrospect pro-
found) objection.

The problem is the following. The dissipation 2vS;S;; is extremely
intermittent in space. There are regions of large dissipation and
regions of small dissipation. In a particular region of size r (r being
assumed much less than [) the average flux of energy to the small
scales, 11(r), should be equal to the spatially averaged dissipation in
that region. It follows that the dynamics of the eddies of size r, which
are the eddies responsible for the flux 11(r), should be controlled by
2v8;S;; averaged over a volume of size 7, rather than the globally
averaged dissipation &= (2v/5;S;;). Let us define

1
BAv(T, X, t) — 7/ (ZVSySy) dV
rJV,

where V, is a spherical volume of radius r centred on x. Then
Kolmogorov’s second similarity hypothesis might be amended to read:
When Re is large, and r lies in the range # < r <1, the statistical properties of

[AV](r)/ (re AV(T))“ ? have a universal form, being the same for all types of flow
and independent of v.

This suggests that (5.24) should be replaced by,
(IAVF () = Bo( 5 ())", <r <

which is sometimes known as Kolmogorov’s refined similarity
hypothesis, (Kolmogorov, 1962). As in the original theory the f8,,’s are
universal, that is, the same for all types of flow. Noting that
(e4y(r)) =&, the globally averaged dissipation, we see that the four-
fifth law is unchanged by this refined view of events. However, for
p# 3, we have the possibility that ([AvF) no longer scales as *'?. In
order to determine the relationship between ([AvY) and r we need to
examine the statistics of £41(r) and estimate (‘9%73 (r)) in terms of; say, 1,
l and &= (21/5;S;).

We shall return to this question in Chapter 6 where we shall see
that, some 20 years after his original theory, Kolmogorov proposed a
simple statistical model for &,y(r) (called the log-normal model) which
led to a correction to (5.24) of the form

([AV]F) = Cp(ST)p/3 (1/r)" p(p—3)/18

where u is known as the intermittency exponent. C, is taken to be a
universal constant in the theory and is usually given a value in the
range 0.2 < 1 < 0.3. Actually, the precise form of Kolmogorov’s (1962)
correction is often criticized, although the essential idea, that the
intermittency of the dissipation necessitates a correction to Kolmogorov’s
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original hypotheses, is now generally accepted. Note that, for p =2,
the correction to the two-thirds law is small and possibly lies within
the range of uncertainty associated with experimental error. Note also
that in this modified version of his theory Kolmogorov did not retain
universality, in the sense that the C,’s are not regarded as universal
constants, that is, the same for jets, wakes, boundary layers, etc. This
is consistent with Landau’s view that the form of intermittency would
change from one type of flow to another. In fact, in Chapter 6 we shall
see that, in those cases where there is pronounced intermittency at the
large scales, neither the f8,’s of the original theory, nor the C,’s in the
refined one, are universal.

Example 5.9  Filtering the velocity field to distinguish between small
& large scales

Consider the trace of one component of velocity, say u,, measured
along a straight line in a field of turbulence, say u,(x) measured along
y=2z=0. This signal will contain both small- and large-scale fluc-
tuations corresponding to the presence of small and large eddies. It is
desired to distinguish between the different scales in u, Consider the
new function

W) — / el — )Gy ()

o

where G,(7) is a filter function defined by

Gi(r)=1/L, |r]<L/2

Gy(r) =0, |r|>L/2.

Evidently 4~ is a smoothed out, or filtered, version of u, in which
fluctuations of scales much less than L are absent. That is, u5(x) is the
average value of u, in the neighbourhood of x, the average being
performed over the length L (Figure 5.19). Other filter functions which
perform similar tasks are

exp(—r*/L?)
Ga(r) = Xpnl/ZL
B sin(7r /L)
G =

(All three functions, G;, are even in r, have integrals equal to unity, and
are small for r>> L.) Use the convolution theorem for Fourier trans-
forms to show that, in general, the Fourier transform of - is given by

ik (k) = 2min, (k) G(k)

where #,(k) and G(k) are the Fourier transforms of u,(x) and G(r). Now
show that, for the particular case of filter function G, ik (k) is simply



Figure 5.19 Filtering the velocity u,(x).
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the transform of u,(x) in which all contributions to #,(k) corresponding
to |k| > /L are annihilated:

iy (k) = i(k), k| <m/L
ir(k)y =0, [k >mn/L.

It would seem that, while #y is dominated by structures of size L or
greater, its transform is non-zero only for k less than /L. We con-
clude that most of the information about the rapid fluctuations in #,
are held in the high-k part of i,(k), while information about the slow
fluctuations in u,(x) are held in the low-k part of i,(k). Thus the
Fourier transform can be used to distinguish between scales in u,(x).
This idea is pursued in Chapter 8.

Example 5.10 Kinetic energy transfer from large to small-scale eddies
Consider homogeneous turbulence of integral scale ! and microscale #.
Let r be some length intermediate between [ and #. We divide the
velocity field into two parts, ® = ®" + »°. Here " is the contribution
to @ which arises from structures greater than r and ®" is associated
with eddies smaller than r. (This division is not unambiguous and
implies the use of a filter of the type discussed in Example 5.9 above to
distinguish between scales.) The Biot-Savart law now allows us to
divide u into u" and u®, where V x u" = @", V x v* = ®° and both u*
and u® are solenoidal. Show that the Navier-Stokes equation yields

0 Ou®
o))+ (a0 = (s =3 + ()
9] Ou”
5 ())& <P“S 'ﬁ> = <T1'SJ'35 - ’5533> ()
where Sy is the strain rate, ‘E{] = — puiLujL and ’ij = —pu’ ujs. Through a

careful choice of filter (say G, in Example 5.9 above) the cross terms
on the left can be set to zero (Frisch, 1995) and we end up with

i (G0 = vl
5 () - 1= ()

/. Sqh LGS
Pl = <%‘Si;‘ Tijsﬁ>'
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The function I1(r), the precise shape of which depends on our choice
of filter, represents the flux of energy from large to small scales driven
by inertia.

We expect TSS{J“> to be non-zero and positive for the same reason
that ‘C:}Ej is positive in a shear flow. That is, the large-scale strain S{J‘.
shapes the small eddies, stretching the small vortex filaments along the
axis of maximum principal stain, increasing their energy. The idea that
<’5ij1.17 controls the energy transfer to smaller scales underlies the
Smagorinsky sub-grid model in large-eddy simulations (see Section 7.1.2)
and Heisenberg’s closure hypothesis (see Section 8.2.2). Let us now
introduce the function V(r) defined by

() = /0 V().

Evidently V(r) represents a sort of energy density, characterising the
eddies of size r. In the inertial subrange, where viscous effects are
unimportant and the turbulence is in quasi-equilibrium, we might
expect that II, depends on the behaviour of eddies of size r, as
characterized by V(r) and r, but it should not depend on v, nor be an
explicit function of time. This suggests that 11, = I1(V, r) Show that, if
3/21’1/2.

this is true, then dimensional considerations demand I, ~V
Hence confirm that, for high-Re turbulence,

<%(us)2> ~ 82/31’2/3

as required by Kolmogorov’s two-thirds law.

5.2.2 Turbulence induced fluctuations of a passive scalar

We shall now show how Kolmogorov’s ideas may be extended to
describe the turbulent mixing of a contaminant.

There are many cases in which one is interested in the influence of
a turbulent velocity field on the distribution of some scalar quantity;
say the distribution of temperature, smoke or dye. If the scalar has no
dynamic influence on the turbulence then we refer to it as a passive
scalar.

Most passive scalars obey an advection-diffusion equation of the
form,

oc

— + (u-V)C =aVC

5t V)

where C is the scalar contaminant (temperature or dye concentration)
and o is its diffusivity. When the Peclet number, Pe =ul/, is large,
which it usually is in a turbulent flow, diffusion is negligible at the



Figure 5.20 In Taylor’s problem we consider
the continuous release of a contaminant from
a fixed point and estimate the average rate of
growth of the contaminant cloud. In
Richardson’s problem a small puff of
contaminant is released at t=0 and we aim
to determine the rate of growth of the puff
as it bounces around in the turbulent flow.
In Problem 3 the contaminant is unevenly
dispersed throughout the medium.
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Problem 1: Taylor’s problem e
'

Problem 3: Local variations in scalar intensity

scale of the large eddies. The scalar C then acts like a marker which
tags the fluid particles. Diffusion is important only at scales which are
characterized by Pe ~ 1. We shall take both ul/a>>1 and ul/v>>1
throughout this section so that diffusive effects are restricted to the
microscales of the turbulence. We shall also assume that there is no
mean flow. Although this second restriction is rarely achieved in
practice, it has the merit of greatly simplifying the analysis.

There are three interrelated problems which often arise in the study
of passive scalars (Figure 5.20):

Problem 1 Taylor diffusion

Imagine that dye is released continuously into a turbulent flow from a
single point source. As time progresses the cloud of dye will spread by
turbulent mixing. A natural question to ask is; how large, on average,
will the cloud be after a time t? Since ul/0c>>1 this is equivalent to
asking how far, on average, will a fluid particle released from the
source migrate in a time t. This problem is called the Taylor problem of
single particle diffusion.
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Problem 2 Richardson’s law

Now suppose that, instead of continuously releasing dye, we create a
single cloud, or puff, of dye at time t = 0. Let the initial size of the puff
be smaller than the integral scale, [, but larger than the Kolmogorov
scale. The centroid of the puft will move as described in Problem 1 as
the blob of dye is swept around by the large-scale eddies. In addition,
the size of the puft will increase with time as a result of the small-scale
turbulence. In Problem 2 we wish to determine the average rate of
spreading of the puff. In effect, we want to determine the average rate
of separation of two adjacent fluid particles (which mark opposite
sides of the puff) as a result of turbulent mixing. This is known as
Richardson’s problem or the problem of the relative dispersion of two
particles.

Problem 3 Local turbulent fluctuations in scalar intensity

In our third problem we abandon the idea of a local release of con-
taminant and suppose that the passive scalar is distributed unevenly
throughout the field of turbulence. For example, we might envisage a
large water tank filled with numerous patches of dye. The tank is then
subject to agitation and, of course, eventually the water and dye
become well mixed. However, during the intermediate stages of
mixing the dye concentration will be non-uniform. That is, although
the course-grain picture may be one of nearly uniform dye across the
tank, the fine-scale dye concentration will remain non-uniform until
such time as small-scale mixing has eradicated all fluctuations in
concentration. In such a case we might be interested in the spatial
structure of the concentration field and the time required to achieve
near perfect mixing,

The first two problems, which are essentially ones of particle
tracking in a field of turbulence, will be discussed in Sections 5.4.1 and
5.4.2. Here we shall focus on the third class of problem, where it turns
out that Kolmogorov-type arguments furnish a great deal of useful
information. Our aim is to characterize the spatial fluctuations in C
and to determine the time required for complete mixing.

Let us suppose that the distribution of C is statistically homo-
geneous and isotropic, with zero mean, (C) =0. (A mean of (C) =0
can be enforced by choosing an appropriate datum from which to
measure C.) Then a convenient measure of the non-uniformity of the
contaminant is provided by the variance of C, defined as (C*). We can
get an expression for the rate of change of the variance from our
advection—diffusion equation. Multiplying throughout by C yields,

; )+ v [(Ge)e] = v - Bever —avey
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When this is ensemble averaged those terms which take the form of
divergences disappear by virtue of our assumption of homogeneity.
The net result is

%<§C2> = —a{(VC)*).

Thus the fluctuations in contaminant are destroyed by diffusion at a
rate proportional to

e = a{(VC)*).

Physically this process represents the cross-diffusion of the con-
taminant between positive and negative regions of C. One of the
curious features of this equation is the absence of a convective term.
Evidently, the convection of C cannot, by itself, reduce the variance.
However, convection still plays a crucial role. Think of cream being
stirred into coffee. The stirring disperses the cream and then teases it
out into finer and finer filaments. When the filaments are so thin that
diffusion can act the destruction term &, cuts in, eradicating the var-
iance and producing near perfect mixing at the small scales. In short,
convection is required in order to generate the large gradients in C
required for the diffusive elimination of (C*). Now suppose that 7, is
the characteristic length-scale of the most rapid spatial fluctuations in
C. This is the analogue of the Kolmogorov microscale for u’, and
represents the length-scale at which diffusion becomes important. In
terms of #. we have,

where (AC), is the characteristic fluctuation in C over distances of
order 7.

We shall now show that we can attribute to &. and 7. a role
somewhat analogous to those of ¢ and # in Richardson’s cascade. We
start by noting that, since C is materially conserved for scales greater
than #,, Richardson’s cascade of eddies should be accompanied by a
corresponding cascade of (C*). That is, as a parent eddy fractures into
smaller daughter eddies (i.e. a vortex blob gets teased out into several
smaller vortex blobs) the contaminant presumably becomes more
finely mixed, with the characteristic length-scale for C going from
Lharent tO ldaugheer- L€t us suppose that this picture is accurate. Then,
just as there is a flux of kinetic energy down the cascade, so there is a
flux, II. =¢. of the scalar variance. This cascade of (C?) is halted
when the characteristic length-scale for the fluctuations in C reaches 7,
and diffusion sets in. However, just as in Richardson’s cascade, we
might expect that, for r>>#,, the details of the cascade are indepen-
dent of the magnitude of the diffusivity.
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Perhaps we should note here that not everyone believes in this
picture of two analogous cascades, one for energy and one for the
scalar variance. Sreenivasan (1991), for example, points out that the
analogy is rather weak and questions whether or not there is a passive
scalar cascade at all. Others are less critical. In any event, we shall see
that the phenomenology of a passive scalar cascade yields certain
predictions which are consistent with at least some of the experiments,
and so we shall tentatively adopt this picture here.

Let us now determine the analogue of Kolmogorov’s two-thirds law
for passive scalars. Let [ be the integral scale of the turbulence, I. be
the characteristic length of the large-scale variations in C, and {[ACT*)
be the structure function

([AC)”) = {[c(x +1) — c(x)]*).

In isotropic turbulence ([ACT’) is independent of orientation and so is
a function of r=[r| only. Now consider an intermediate range of
length-scales characterized by,

Hmax — max[ﬂ, r’c] <r K mm[li lC] - lmm

This defines the so-called inertial-convective subrange. The name derives
from the fact that the restriction r>># guarantees the dominance of
inertia over viscous forces, while the requirement that r>> #. ensures
that the convection of C is much greater than diffusion. Let us now
rework Kolmogorov’s ideas. Since max[#n,#n.] <<, we would expect
that neither v nor o will influence ([ACT?) in the inertial-convective
subrange. On the other hand, the restriction r < min[l, [.] = L,;, sug-
gests that ([AC]?) depends on the large scales only to the extent that
they determine the flux of energy and scalar variance from large to
small scale, that is, they determine ¢ and &.. Thus, following a line of
reasoning close to that of Kolmogorov we might expect that, in the

inertial-convective subrange,
<[AC]2> =f(e ec,71).

We must now revert to dimensional analysis. First we note that € and r
do not contain the units of C, which might be temperature say.
However, the dimensions of &, scale as C*, and so the function f must
be linear in &

([AC)*) = ecf (e, 7).

Dimensional arguments are then sufficient to uniquely determine the

form of f. It is readily confirmed that the only possibility is

([ACT) ~ et Pr??) e € 1 < Lo
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which fixes ([ACT?) to within a constant of proportionality. This result
is the analogue of Kolmogorov’s two-thirds law for passive scalars and
was first suggested by Obukhov in 1949, and independently by Corrsin
in 1951. It is somewhat reassuring to discover that its predictions are in
close agreement with most numerical and physical experiments
(Lesieur, 1990). More generally, the Kolmogorov—Obukhov—Corrsin
argument leads to

([ACT) ~ &2 /oy < loin

for any positive integer p. However, there is growing evidence that
the Kolmogorov-Obukhov—Corrsin theory is imperfect, with dis-
crepancies arising from the strong intermittency of the scalar con-
centration in the inertial-range, particularly for large p. Also, some
experiments display a surprising lack of isotropy in the scalar con-
centration at the small scales, in contravention of Kolmogorov’s
theory of local isotropy (Sreenivasan, 1991, Warhaft, 2000). For exam-
ple, Sreenivasan (1991) looked at the small-scale structure of a passive
scalar in simple shear flows. He found that local isotropy is almost
never achieved in shear flows at terrestrial values of Re. One illus-
tration of this is the fact that the skewness of JC/0x, that is, ((OC/
9x)°) ] ((8C/0x)*)*"?, which should be zero if local isotropy exists, is
found to be of the order of unity, and not zero. Curiously, though,
despite this lack of local isotropy, the two-thirds law seems to hold
true at high Re. Evidently, great care must be exercised when extra-
polating Kolmogorov’s cascade ideas to the statistical distribution of a
passive scalar.

One exact result, however, can be obtained directly form the
governing equation for a passive scalar. It is (see the Appendix at the
end of this chapter)

(Au|[ACT) = —~Zecr, Ny < 7 < Lipin

3

where Ay is the component of u(x + r) —u(x) which is parallel to r.
This is the scalar analogue of Kolmogorov’s four-fifths law.

Note that the two-thirds law allows us to estimate the magnitude of
(IACT) for the scale 1~ L. That is to say, although the two-thirds
variation in r breaks down long before we reach r~ l,,;,, we might at
least expect the magnitude of ([ACT?) at the top of the inertial-con-
vective range to be of the same order as the magnitude of ([ACT?) at
7~ Lin. If this is true then we have

2 ~ —1/372/3
([AC] >lm, ec& Pl
Similarly we might expect,

([ACP), ~ e o2

max”
ax
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Figure 5.21 Computer simulation of a
passive scalar in isotropic turbulence at a
Schmidt number of 25. (Picture by

G. Brethouwer and F. Nieuwstadt, University
of Delft. Courtesy of efluids.com.)
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There is now the issue of determining the contaminant microscale
. Here we must distinguish carefully between low and high Schmidt
numbers, v/o. We start with the latter. When the Schmidt number is
greater than unity, v > o, the diffusion of C is less effective than the
diffusion of vorticity. We expect, therefore, that a fine-scale structure
of C will develop in which #. <#. In particular, it was suggested by
Batchelor that very thin sheets or ribbons of contaminant will be
teased out by eddies of size # and velocity v, that is, the Kolmogorov
microscales. A similar process of sheet formation is considered in
Section 5.3.3 where we show that the resulting sheet thickness is

12 and to the strain of the relevant eddies

proportional to (diffusivity)
raised to the power of minus one half. Such sheets are evident in the
computer simulation of isotropic turbulence shown in Figure 5.21.
The figure shows the concentration distribution of a passive scalar at a
Schmidt number of 25. The spirals indicate regions where the scalar
sheets have become wrapped around turbulent vortices.

The thickness of the sheets in Figure 5.21 is of the order of o'/ *(v/

71)71/2
11)—1/2

, in line with the theoretical estimate above. Thus 7, ~ ocl/z(v/
, or equivalently

2
v/mue > ).
o
Since the Kolmogorov microscales are related by vi/v ~ 1, this
yields

e~ ()"0 >

V.

which is consistent with the assertion that #. <#. The range of scales
between #,. and # is referred to as the viscous-convective subrange, for
obvious reasons.

Now consider the case where the Schmidt number is less than
unity, v < o. Since the diffusion of C now is more effective than that of
vorticity we have #.>#. The range of scales between # and #.
represents the so-called inertial-diffusive subrange. The defining char-
acteristic of #. in such a flow is a little different to that of the high
Schmidt number problem discussed above. Here we require that the
Pe based on #. is of the order of unity so that diffusion can compete
with advection to smear out gradients in C. Thus we expect

VC”C

5 1 (v <o)
where v, is the characteristic velocity fluctuation at the scale of #..
From Obukhov’s derivation of Kolmogorov’s two-thirds law we have

v, ~ (en'’? in the inertial subrange. This expression is also satisfied by

1/3

the Kolmogorov microscales v and #: v ~ (ex) '”. Thus, provided #,.
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lies in the inertial or dissipative ranges, we might take v, ~ (en)"”. It

follows that,

1/3
(end) e (v < o)
o
or equivalently,

o

e ~ (;) 3/411 (v < o).

This information about how the microscales vary with Schmidt

number is summarized below:

o 1/2

High Schmidt He ~ (—) 1 Inertial-convective  Viscous-convective
v

number (n.<mn) range: 1§ K r <K 1 range: 1. <r<#
o374

Small Schmidt 7. ~ (—> 1 Inertial-convective  Inertial-diffusive
v

number (n.>n) range: 1], < r <1 range: 1 <r <17,

There remains the question of how rapidly the scalar will mix. Let us
assume that [. <I. Then the two-thirds law yields the estimate

<C2> ~ 8C871/3lz/3
which can be rearranged to give
Ee ~ <C2>81/31—2/3 ~ <C2>u171/3rz/3

. 3 . .
since € ~u” /1. Thus the scalar variance declines at a rate

di1 u

_ 2 —_ — ~ — 2
dt2<c > be 11/31§/3 <C >

Perhaps the most important situation is when the same mechanism is
used to create the turbulence and the scalar fluctuations, for example,
a heated grid in a wind tunnel. In such a case I. ~ 1 and our equation
simplifies to

d /1 u

— —C2> = —g. ~ —={(C?).

dt <2 ()

Compare this with the equation for the destruction of energy in freely
decaying turbulence,

Evidently, for such cases, {C*) and u® decay on the same timescale,
which is the large-eddy turnover time. Let us now return to the more
general situation where the two lengths [ and [. need not be equal.
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Then our expressions above for the decay of (C*) and u® can be
combined for freely decaying turbulence to give,

s (@)

where m is, presumably, a number of the order of unity.

This concludes our brief introduction to the mixing of passive
scalars. We have left a great deal out, but those interested in filling in
the gaps could do a lot worse than consult Tennekes and Lumley
(1972), or Warhaft (2000) for a more recent review.

5.3 The intensification of vorticity and
the stretching of material lines

5.3.1 Enstrophy production, the skewness factor, and
scale invariance

In Section 5.1.2, we suggested that the energy cascade is maintained
by vortex-line stretching which tends to pass energy down to smaller
and smaller scales. That is, we imagine the vorticity field advecting
itself in a chaotic manner, teasing out the vortex tubes and sheets into
finer and finer structures (Plate 8). This process of stretch and fold
produces, we claimed, a highly intermittent vorticity field. We now
return to this issue. In particular we want to explore the intimate
relationship between vortex stretching (i.e. enstrophy production) and
the skewness factor. Our starting point is the vorticity equation

D
F? = (o - Viu+ Ve (5.26)

from which we can obtain an equation for enstrophy,

2
% (%) = 0085 — V(V x 0)"+V - v x (V x @)].  (5.27)
(Note that some authors define the enstrophy as ®”/2 and others as @”.)
For simplicity, let us consider the case of freely decaying turbulence
(no mean velocity) which is statistically homogeneous. Then, on
taking averages, the divergence on the left-hand side of (5.27) dis-
appears since (~) commutes with V-[~] and V-[(~)]=0 in
homogeneous turbulence. The same is true of the term u - V(w?/2) =
V - (w*u/2). So we are left with

2 (a#/2) ~ (os) — (9 x o). 29
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(Strictly, according to our convention, we should use a prime on
® and Sy to indicate that these are turbulent quantities. However,
since there is no mean flow we may omit the prime without fear of
ambiguity.) Equation (5.28) tells us that enstrophy can be created or
destroyed by the strain field, and is destroyed by viscous forces. Now
we have already seen that the flow as a whole evolves on the time-
scale of the large eddies, /4, with the small eddies continually
adjusting to the local conditions of the large scales. Also, we have seen
that, for fully developed turbulence, @ and Sj; are concentrated at the
Kolmogorov end of the spectrum (Figure 3.6). So we have, from (5.7)
and (5.8)

3< 2 3) u (v\° u(S)
—{® ~ — | — ~ — | —
ot 1\ L \v
2

AT (f)

(036
2

~Z ()Y (E)

n* (n) n\v
When Re > 1 we know that u/l < v/# and so the rate of change of
o’ is relatively small by comparison with the other terms in (5.28). It

follows that, for large Re, the two terms on the right-hand side must
have similar magnitudes

(@1058;) = v((V x @)1+ 0(Re /%) (5.29)

This tells us two things.

(i) The stretching of vorticity outweighs compression of the vortex
lines so that, as suggested in Section 5.1.2, the net effect of the
strain field is to create enstrophy, that is, (;;S;) is positive.

(ii) There is an approximate balance between the production of
enstrophy and viscous dissipation.

The implication is that vortex stretching transfers vorticity (and its
associated energy) from large and intermediate scales down to the
small, with dissipation concentrated at the small scales.
Now in Chapter 3, we introduced the skewness factor for the
probability distribution of Av=1wu(x+ r&,) — u(x):
(AvF)

§=—— (5.30)

<[AV]2>3/2'

In the limit of small r we have

<(aux/8x)z>

. (5.31)
{(Ouc0x)*) /

SOZS(THO):
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We noted that for a Gaussian probability distribution S is zero,
whereas in practice Sy, has a value of around — 0.4 (in grid turbu-
lence). It is no accident that S is negative, since it may be shown that,

for isotropic turbulence,

7

(@i;Sy) = — 6\/ES°<°’2>

3/2

(5.32)

(see Section 6.2.3 in Chapter 6). Evidently, a negative value of S, is
needed in order to ensure that (,w;S;) is positive, in line with (5.29).
We shall return to the idea of skewness, and its physical interpretation,
in Section 5.5.1 where we shall see that its partner, the flatness factor
6 = ([Av]")/ ([AvT*)?, also tells us a great deal about the vorticity field.
In particular, measurements of 0 provide direct evidence that the
vorticity field is highly intermittent, something we would expect in a
cascade driven by vortex stretching and folding.

We conclude this section with an aside about the skewness dis-

tribution in the inertial subrange. Recall that, in the inertial range,
([AVT) = Be*"*r*"? while <[Av]3> = —Zer. It follows that

_%_gﬁm (< r<l) (5.33)

which was introduced in Section 3.2.7. It is common to interpret the
constancy of the skewness, S, across the inertial subrange as follows.
The Euler equation exhibits a property known as scale-invariance. That
is, suppose u(x, t) represents one solution of the Euler equation. Then
u*(x*,t") is also a solution provided that,

w=21n, x*=I1x, =",

where / is a scale factor and n a scaling exponent. Thus a solution at
one scale has its counterparts at all other scales. This has led to some
speculation that the statistical behaviour of u(x,t) should be scale
invariant in the inertial subrange, in the sense that

(AVE () = 2" (AVE(D)), §<r<L

What does this mean? Imagine that we performed a high Re computer
simulation of turbulence, with Re large enough to yield many decades
of the inertial subrange. (Such a simulation may not be practical at
present, but that is not important for this discussion.) Suppose that
we home in on some small region of the flow, say a cube of volume
(1/5)’, and plot the isovortical surfaces using some appropriate threshold.
We might get a picture which looks something like that shown in
Figure 5.22 or else Plate 8. We now zoom in and select a sequence of
cubes of ever smaller size, say (I/50)°, (1/500)°, and (1/5000)’. For each
cube we plot the vorticity contours, taking care each time to rescale



Figure 5.22 Vorticity contours in a sequence
of cubes of decreasing size taken from the
same turbulent flow. If the turbulence is scale-
invariant then the plots should all look qua-
litatively similar provided that the threshold
for vorticity is reset each time in the appro-
priate manner.

The intensification of vorticity and the stretching of material lines
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the threshold for || by the appropriate factor, that is, 10' ~" for the
(1/50) cube, 100" ~ " for the (1/500) cube, and so on. Of course, for each
cube the precise details of the vorticity field will look different.
However, if the turbulence is scale-invariant, then the sequence of
vorticity plots should look qualitatively similar, exhibiting the same
statistical properties.

If scale invariance does hold then the scaling exponent, n, is set by
the four-fifth’s law,

(AVP() = er, n<r<l
That is
(AP (3)) = 2 ([AVP (1)) = A(—2er) = A (—tedr) = —tedr

from which n=1/3. One immediate consequence of this scale
invariance (if it is true) is that the skewness should be constant in the
inertial subrange, as predicted by a combination of Kolmogorov’s two-
thirds and four-fifth’s laws, and as observed in the experiments. (Try
proving for yourself that scale invariance demands S = constant.) Thus
the constancy of S, as represented by (5.33), is seen by some as pro-
viding evidence for scale invariance of the statistical properties of u in
the inertial range.
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Actually, Kolmogorov noticed that he could use these ideas to
formulate an alternative derivation of his two-thirds law. Recall that
the conventional procedure is to derive the two-thirds law from
Kolmogorov’s two similarity hypotheses, and then show that this
demands that the skewness is constant. This is the line adopted in this
book and indeed it was the argument which appeared in the first of
Kolmogorov’s 1941 papers. However, suppose instead that we start
with the hypothesis that the skewness is constant in the inertial sub-
range (perhaps based on an argument of scale invariance), rather than
with the two similarity hypotheses. One can then combine the con-
stant skewness hypothesis with the four-fifth’s law (which is exact
provided the turbulence is homogeneous) to deduce the two-thirds
law. In short, it is possible to turn the original argument on its head.
This was the strategy proposed in Kolmogorov’s second 1941 paper,
though he made no direct appeal to scale invariance. It is, perhaps, a
matter of taste as to which approach is to be preferred.

5.3.2  Sheets or tubes?

You asked, "What is this transient pattern?’

If we tell the truth of it, it will be a long story;

It is a pattern that came up out of an ocean

And in a moment returned to the ocean’s depth. (Omar Khayyam)

Equation (5.32) is an intriguing result. Since we need stretching, and
not compression, for enstrophy generation we might have expected a
positive value of (w;;S;) to be associated with positive ((Ou,/9x)’).
Evidently this is not the case. In fact, quite the reverse: we need S, < 0
for enstrophy generation! The reason for this is rather subtle. The first
point to note is that a variable with zero mean and negative skewness
is characterized by the fact that positive excursions from zero are long
and shallow, while negative excursions are less frequent but deeper.
Thus Ou,/Ox is positive much of the time but is subject to large
negative fluctuations. The physical interpretation of these negative
(compressive) excursions may be explained as follows. It turns out,
though it is not obvious, that S, is proportional to, and takes the same
sign as, {(abc) where a, b, and c are the three principal rates of strain at
any point and at any time in the flow (see Section 5.3.6). Now
incompressibility requires a +b-+c=0, so if we order the rates of
strain according to a > b > ¢ then a will be positive, ¢ will be negative,
and b will be positive if |c| > |a| or negative if |a] > |c|. It follows that
the intermediate principal strain rate, b, has the opposite sign to that of
abc. The fact that S, is negative tells us that, on average, we encounter
a situation where ¢ <0 and a4, b > 0, that is, we have one large com-
pressive strain rate accompanied by two weaker extensional rates. So
material is stretched in the a-b plane and compressed in the direction



Figure 5.23 (i) A negative skewness requires
one compressive strain rate and two
extensional ones. This tends to lead to the
formation of vortex sheets. (ii) A positive
skewness requires one extensional strain
rate and two compressive ones. This tends
to lead to the formation of vortex tubes.

In isotropic turbulence S, is negative,
favouring the formation of sheets.

The intensification of vorticity and the stretching of material lines
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of °c’. Such a situation, which we might call biaxial strain, tends to be
associated with the formation of vortex sheets (Batchelor, 1953,
Chapter 7, Section 4). That is, vorticity is compressed into sheets by
the large compressive strain while the sheets themselves are stretched
by the two weaker extensional strains. This has led to one particular
cartoon of turbulence in which the strain field is continually teasing
out vortex sheets and these sheets then roll up via a Kelvin-Helmholtz
instability to produce vortex tubes. In fact, this classical view of the
vorticity field is receiving renewed interest as a result of recent
computer simulations which suggest that sheets are indeed formed
ahead of the tubes, and that {(a,b,c) ~ (3,1, — 4) (see Section 7.3.1).

We note in passing that a positive value of S;, and hence a negative
value of b, would lead to a situation in which we have only one large
extensional rate of strain accompanied by two weaker compressive
strain rates (axial strain). This would tend to favour the formation of
vortex tubes (Batchelor, 1953), with the large extensional strain
stretching a tube along its axis and the weaker compressive strains
compressing the sides of the tube. The two situations are shown in
Figure 5.23.

So it would seem that the statistical bias towards a negative
skewness favours the formation of sheets rather than tubes. However,
the situation is not that simple. When a vortex tube is being stretched
it has its own strain field and this adds to the external, imposed strain,
tending to convert axial strain to biaxial strain (Moffatt et al. 1994). On
the other hand, as noted above, recent computer simulations support
the view that the dominant process is the formation of sheets, and that
those tubes which are observed are simply the debris resulting from
the (Kelvin-Helmholtz) disintegration of the sheets. So should we
picture the vorticity field as a seething mass of spaghetti or lasagne?
The relative importance of vortex sheets and vortex tubes is still a
matter of debate and it is likely to remain that way until higher-Re
computer simulations can be performed. In the meantime perhaps it is
prudent to consider both sheets and tubes as potentially important.
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Whatever the generic structure of turbulent eddies, there is no
doubt that vortex stretching underpins the energy cascade. Both the
vortex tube and vortex sheet shown in Figure 5.23 have their vorticity
aligned with a positive rate of strain, so that the vortex lines are
stretched. Of course, in isotropic turbulence there is always some
compression of vortex lines as well as stretching. However, the
stretching wins out in terms of enstrophy production.’

Example 5.11

Consider a small eddy (a localized blob of vorticity) which falls prey to
the stain field of a larger adjacent eddy. The linear impulse of the
smaller eddy is

1
Leg—/ X X W, dV
2 V.

where w, is the vorticity of the smaller eddy and V, is the volume
occupied by ®.. Suppose that the strain field of the larger, remote
eddy may be considered as quasi-steady and uniform on the scale of
the small eddy, and let u be the (locally) irrotational velocity field of
the larger, remote eddy. Let us take x, y, and z to be aligned with the
principal axes of strain of & and 4, b, and ¢ to be the principal rates of
strain. (Conservation of mass requires a + b -+ c=0.) In such a case we

have,
d
a [Lex’ Ley’ Lez] - - [aLex’ bLey: CLez]

(see Example 5.7 in Section 5.1.3). It seems that, when we have biaxial
strain (¢ <0, and a, b > 0), L., grows but L, and L, decay. Show that
this is compatible with the vorticity of the eddy being squashed into a
pancake-like structure. On the other hand, when we have axial strain
(a>0, and b,c <0), we obtain a growth of L., and L., and a decay of
Lex. Show that this is consistent with the vorticity being teased out
into filaments. Finally, use the Schartz inequality to estimate the
enstrophy change.

5.3.3  Examples of concentrated vortex sheets and tubes

There are a number of simple (but informative) mathematical car-

toons which illustrate how vortex sheets and tubes can be intensified

* Actually, it turns out that, on average, the vorticity tends to be aligned with the
intermediate principal rate of strain, b, which is positive most of the time. Nevertheless
most of the vortex stretching is associated with the largest positive principal strain, 4.
That is, although the vorticity is infrequently aligned with a, on those occasions when it
is, a great deal of stretching occurs (see Tsinober, 2001, or Section 5.3.6).



Figure 5.24 Straining of vorticity:
(i) Burgers’ vortex; (ii) formation of a
vortex sheet.
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by straining. The most famous one is, perhaps, Burgers’ vortex.
Suppose we have a vortex tube,

ol 2 <21
o = —exp|—r°/d°]e,
2L expl—/5]
sitting in an axisymmetric, irrotational strain field, u, = — % or, U, = 0z.

Here I, is the strength of the vortex tube, I’y = fooo w27mr dr, and
0 = (4v/m)""? is its characteristic width (Figure 5.24). It is readily con-
firmed that this represents an exact solution of the steady Navier-Stokes
equation. The irrotational motion sweeps vorticity radially inward
while simultaneously straining the vortex tube in the axial direction.
These processes exactly counterbalance the tendency for vorticity to
diffuse radially outward. In a turbulent flow the strain rate, o, might be
associated with the large-scale eddies, o ~u/l, in which case

5~ (ul/v) V1~ Re VL~ A,

The quantity A ~ Re "'*l, which lies somewhere between 1 and 1, is
called the Taylor microscale. On the other hand, the strain might be
associated with somewhat smaller eddies, in which case o is larger and
0 smaller. In fact, if we believe in the phenomenology of the energy
cascade, we would expect a range of tube sizes. So, if anything
resembling a Burgers’ vortex is to be found in real turbulent flows
then we might expect to see vortex tubes of diameters ranging from
the Taylor microscale down to #. It is interesting that the direct
numerical simulations of turbulence show exactly that (see Plate 8),
although just how important these tubes are for the energy cascade is
still a matter of debate. (We will return to this issue in Chapter 7.)
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It is left to an exercise for the reader to confirm that, in the limit of
small viscosity, the global viscous dissipation produced by Burgers’
vortex is finite, independent of v, and equal to al'?/(87) per unit
length of the vortex (see Exercise 5). This is reminiscent of the dis-
sipation in a turbulent flow where, according to Kolmogorov’s theory,
we may take & and v as independent parameters. Indeed it was pre-
cisely this feature of the vortex which Burgers emphasized in his
original paper (Burgers, 1948).

Burgers’ vortex may be generalized to unsteady flows in an obvious
way. Let us assume that the irrotational strain field is u, =
—2o(t)r,u; = o(t)z (ie. we have axial stain), and look for an

unsteady, axisymmetric, tubular vortex of the form
r
o= n—;exp[—rz/lz] &, 1=1(t).

Then it is readily confirmed that we have an exact solution of the
unsteady Navier-Stokes equation provided that the vortex radius, I(t),

satisfies

2

— + a(t)l? = 4.
dtJroc() v

Several special cases immediately come to mind. If « is constant and
t — 00 then we recover the steady solution given above, with I*= 41/
o. Here the inward advection of vorticity exactly balances the outward
diffusion. If ®=0, on the other hand, we find 1> = IZ + 41t (see
Exercise 3). In this case there is no inward advection of vorticity and
the vortex core grows by diffusion. The general solution for arbitrary

but constant « is
P==Ee ™+ (av/a)[1 —e™].

If the initial vortex radius, ,, exceeds the steady-state value of [4v/ o]'’?

then the vortex core shrinks due to vortex stretching and approaches
the steady-state value on a timescale of o~ '. On the other hand, if I, is
less than [4v/0]"?
steady-state value is reached. Of course, it is the first of these two

then the vortex core grows by diffusion until the

options which is of most relevance to turbulence.
1/2

When [ greatly exceeds [41//0] '~ the viscous term can be neglected
and the general solution for [, allowing for a time-dependent strain, is

clearly,

P =1 exp [ /Otoc(t)dt}

Thus the vortex core shrinks exponentially fast and it is readily con-
firmed that the rate of growth of kinetic energy per unit length of the
vortex is ol '} /(87).



The intensification of vorticity and the stretching of material lines

As a second example, we consider a vortex sheet embedded in an
externally imposed biaxial strain field. In particular, consider the
vortex sheet

o =wyexp [ —x*/P)e, &= (w/a)?

sitting in the irrotational flow, u, = — ox, u, = 0z. Again, when o is
constant, it is readily confirmed that this represents a steady solution
of the Navier-Stokes equation in which the tendency of vorticity to
diffuse outward is countered by the inward advection and (compres-
sive) straining of the vorticity field (Figure 5.24). Of course, this sheet
is prone to the instabilities of the Kelvin-Helmholtz type and so it will
not survive for long. Rather, it will rapidly disintegrate into a set of
vortex tubes.

Example 5.12 Formation of a vortex sheet
Confirm that the example above of a vortex sheet sitting in a biaxial

1/2
, to

strain field generalises, in cases where 6(0) # (2v/ o)
® = (uy/1) exp[—x*/P]é,, uy = constant, 1= I(t)

where [ is governed by
2

ar + 20 = 4v.

dt

Find the solution for I(t) and show that, if [(0) exceeds (2v/)"/?, then
the sheet is compressed until I = (21// )%, whereas 1(0) less than (2v/
)''? leads to a thickening of the sheet by diffusion. In either case,

I tends to (2v/x)*'? on a timescale of o .

5.3.4  Are there singularities in the vorticity field?

It seems likely that, since any real fluid possesses a finite amount of
viscosity, singularities cannot develop in the vorticity field. This is illus-
trated in Example 5.12 where the strained vortex sheet always tends to a
thickness of (2v// &)’ % If 1(0) happens to be less than (21// a)"'?, then the
sheet thickens by diffusion. The same behaviour is exhibited by Burgers’
vortex. Thus it is probable that a small amount of viscosity is all that is
needed to unlock any potential singularity in the vorticity field.

There remains the more academic question as to whether or not a
singularity, defined, say, as a blow-up of the enstrophy, can develop in
an inviscid fluid. This issue has been the subject of much discussion
and some controversy. There is no doubt that, given enough time,
singularities can begin to emerge in an inviscid fluid. Consider, once
again, the example of a strained vortex sheet. It is readily confirmed
that the solution for v =0 is

1 =1(0) exp[—ot]
Bla)z = ow*
Dt2
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so that w” grows exponentially. A more important (and controversial)
question is whether or not inviscid singularities can emerge within a
finite period of time: so-called finite-time singularities. There was once
a widespread belief that this is indeed the case, though the hunt for
such a singularity has proved to be more than a little problematic.
Incidental (though not very convincing) evidence in favour of finite-
time singularities in an inviscid fluid includes the following:

(i) Some models of Richardson’s energy cascade suggest that the
energy transfer time from [ down to # is of the order I/u, which
remains finite as v tends to zero (Frisch, 1995). Moreover, 7 scales
as *'* while @” scales as /' as v becomes small. This suggests
that, for a vanishingly small viscosity, energy piles up at a
distribution of near singular points in a finite time.

(i) Certain turbulence closure models, such as the quasi-normal

closure scheme, predict finite-time singularities for v = 0.

One motivation for establishing whether or not such singularities can
form is the hypothesis that, if they do exist, then similar structures
should appear in very high Re turbulence. This is, however, an
assumption. In any event, heuristic arguments in favour of finite-time
singularities have appeared in a number of texts. Typically, they
proceed as follows. We start with the vorticity equation for a real
(viscous) fluid and try and estimate the rate of generation of enstro-
phy, perhaps with the help of some plausible hypothesis. The next
step, which is completely unjustified, and almost certainly wrong, is to
assume that this rate of generation is the same in an inviscid fluid.
Although the conclusions from such an analysis carry little weight, it is
worth going through the details because they bring out a number of
interesting points. To keep the analysis simple we shall restrict our-
selves to isotropic turbulence.

Perhaps the two most common heuristic arguments are the so-
called quasi-normal and constant skewness models. In either model the

starting point is

Dw

o (0 Viu+rVie
from which,

D [(®?

Here the last term on the right simply indicates a viscous contribution,
the precise details of which are not important here. In the constant
skewness model we use (5.32) to rewrite this as

7

64/15

dit<‘”2/2> = (wi;Sy) +v(~) = — So(00?) > 40,



The intensification of vorticity and the stretching of material lines

Now in fully-developed turbulence at high Re it is observed that the
skewness, So, of the velocity derivative Ou,/Ox is more or less constant
and equal to — 0.4. Suppose that this were also true for an inviscid
fluid. Then we have, for an inviscid flow,

7

61/15

where S, is now a negative constant. This integrates to give

(o) ~ (0 — )"

d 2 - 2\3/2
e?/2) = — =8 (w)

where t, is a constant proportional (0.)3)_1/ 2. This predicts a blow-up
of the enstrophy at time t,. Of course, the problem with this argument
is that we have absolutely no right to assume that the skewness
exhibits the same behaviour in both viscous and inviscid flows. Let us
turn, therefore, to the quasi-normal model and see if it fairs any better.
(We shall see that it does not.)

In the quasi-normal model it is assumed that, as far as calculating
the fourth-order correlations is concerned, we may take the velocity
field to have a Gaussian probability distribution. This is an approx-
imation for which, at one time, it was thought that there was a certain
amount of experimental support. This scheme is discussed in detail in
Chapter 8, where its deficiencies are highlighted. For the present
purposes, however, the important point to note is that the quasi-
normal (QN) model leads to a second-order differential equation for
{@?)(t). So, before looking at the QN model in detail, let us see if we
can get a second-order equation for the evolution of ®” in a viscous
fluid using simple physical arguments. If we go back to

D (ﬂ) = [wi;Sy] + v(~)

Dt \ 2

and differentiate once, we find
D* [? 5 D
— | — :2601'81' +CU1'CO’—Si'+I/N .
o () =2l + o g+ o)
The problem now is to estimate the terms on the right. One useful

observation in this respect is that, for fully-developed isotropic tur-
bulence, it is observed that,

(oormsy) ~ S + 1)

(see, for example, Tsinober, 2001). Thus we have
3 /w? 2 o
= <7> = 5<[a)181]]2> + v(~) (empirical).
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Interestingly, it turns out that the QN model leads to an equation of
similar form, though without the factor of 2/3 on the right-hand side:

¢ /o?
e <7> — <[0)1'Sij]2> + v(~) (quasi-normal model only).

The question now is: can we estimate the size of [a)iSij]z? One might
be tempted to take it to be of the order of (w”)* and indeed this is
precisely what the QN closure scheme predicts. In fact, we shall see in
Chapter 8 that the QN model suggests,

£ <lu)2> = E[<lm2>} Z—HJ(N) (quasi-normal model only).
dt? \2 3L\2

Actually this is consistent with the observation that the skewness of
Ou,/Ox remains finite and constant in fully-developed, high-Re tur-
bulence. That is, if we take the skewness S, to be constant then it is
readily confirmed that the derivative of the enstrophy equation yields

dz

1, 49 ,1/1 ,\1?
@< o) > =—S, K—m >] +v(~) (constant skewness model).

2 45 °L\2

So we see that our quasi-normal equation is a form of constant
skewness model in which the skewness is given a particular value.’
Note that, for fully-developed, high-Re turbulence, eqn (5.29) tells us
that the two terms on the right-hand side of this equation are very
nearly equal and opposite. It follows that the left-hand side is close to
zero, or to be more precise, is of the order of (ul/v)”" times one of the
terms on the right.

So far we have taken v to be small but finite. Let us now set the
viscosity to zero while assuming that the form of the inertial terms in
our model equations remain the same. Of course, this is a dangerous
strategy as the experimental evidence which tentatively supports the
QN model (or our assumption that S, is constant) comes from real (i.e.
viscous) flows. Still, let us see where this leads. We have, from the QN
model,

= (507) ~3[Go)] (uastnormal mode on
7 Ew =3 zoo (quasi-normal model only).

One integration yields
d /1 21 /1 3 1 3
o) =3 1Ger) Gon)
dr \2 3[\2 2

® By comparing these two equations it is readily confirmed that the skewness in the
QN model is equal to —0.782. In practice, however, the skewness for high-Re turbu-
lence is closer to — 0.4, indicating that the QN model significantly overestimates the rate
of generation of enstrophy, a failure of the model which was a source of concern for

Lighthill as far back as 1957 (unpublished manuscript).
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where, for convenience, the initial value of d(®”)/dt has been set
equal to zero.” On integrating once more we find,

(Jo0) = 9/(ts — )"

for t — t,, where t, is a timescale of the order of {eg) "% (This may
be confirmed by neglecting (@g) in the differential equation above
during the second integration.) Thus the quasi-normal closure scheme
predicts a finite-time blow-up of the enstrophy, just like the constant
skewness model (of which it is a special case). However, we shall see
later that there are good reasons for not believing in the quasi-normal
scheme. (It leads to a number of erroneous predictions.) Perhaps a
better approach is to go back to the approximate expression,

T (L) =) + vt

a\z/" 3

If we compare this with the QN equation we see that it is implicit in
the QN model that the rate of strain is of the order of the local
vorticity. It is this coupling between S;; and @ which lies behind the
predicted finite-time singularity. However, the examples of strained
vortex sheets and tubes given in the previous section suggest that an
alternative estimate of the right-hand side might be

2
i (59°) ~ 2 o7)

where o is a strain rate which is characteristic of the eddies somewhat
larger than the enstrophy containing eddies. (This is the picture which
emerges from the simulations of Laval et al., 2001, and of Jimenez and
Wray, 1998—see section 7.3.2.) If « is decoupled from ®” this yields a
benign, exponential growth in enstrophy, rather than the finite-time
singularity predicted by the QN model.

So it seems that various plausible, but heuristic, estimates of
([CoiSijf) lead to very different predictions for the fate of the enstro-
phy. Everything hinges on the assumed magnitude of the strain field
responsible for teasing out the small-scale vortex tubes. Clearly,
heuristic models of the type discussed above are very unsatisfactory. In
particular, they do not build in the sort of detailed dynamic informa-
tion needed to distinguish reliably between an exponential or a finite-
time singularity. The issue can be resolved only if more rigorous
arguments are deployed, or else exact solutions can be found which
exhibit singularities.

There have been many attempts to construct simple model pro-
blems which exhibit finite-time singularities. An early contender was

7 Gaussian initial conditions, for example, would give d{w”)/dt=0 at t=0.
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the self-centrifuging vortex blob shown in Figure 5.6. Consider the
final sketch in Figure 5.6. Pumir and Siggia (1992) suggested that the
poloidal vortex sheet, which is represented by lines of constant
I = rup, is unstable. That is, a wrinkling of the sheet leads to enhanced
axial gradients in I" which, in turn, act as a source of azimuthal
vorticity in accordance with (5.10). This then augments the local strain
field and advects I" (i.e. the sheet), leading to additional wrinkling and
thinning of the vortex sheet. Pumir and Siggia (1992) suggested that
this might lead to a runaway situation, giving rise to a singularity.
However, it is now thought probable that such a singularity emerges
exponentially in time, rather than the algebraic growth needed for a
finite-time blow up of the enstrophy.

Other model problems have involved so-called Leray self-similar
flows (see Example 5.7 at the end of this chapter) and/or entangled
vortex tubes, but these too have proved problematic. The failure of
these simple models has shifted the emphasis towards the numerical
simulation of more complex flows. However such simulations are
difficult to perform since they require the ability to track the emerg-
ence of a latent singularity. The results of these computations are, as
yet, inclusive, but the interested reader may consult Bajer and Moffatt
(2002) or Pelz (2001).

Example 5.13
Combine (5.28) and (5.32) to show that, for an inviscid fluid, the
enstrophy evolves acco<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>